
Ecological Modelling 473 (2022) 110133

0304-3800/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Insights on biodiversity drivers to predict species richness in tropical forests 
at the local scale 

Rubén G. Mateo a,b,*, Gabriel Arellano c,d, Virgilio Gómez-Rubio e, J. Sebastián Tello f, 
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A B S T R A C T   

Disentangling the relative importance of different biodiversity drivers (i.e., climate, edaphic, historical factors, or 
human impact) to predict plant species richness at the local scale is one of the most important challenges in 
ecology. Biodiversity modelling is a key tool for the integration of these drivers and the predictions generated are 
essential, for example, for climate change forecast and conservation planning. However, the reliability of 
biodiversity models at the local scale remains poorly understood, especially in tropical species-rich areas, where 
they are required. We inventoried all woody plants with stems ≥ 2.5 cm in 397 plots across the Andes-Amazon 
gradient. We generated and mapped 19 uncorrelated biodiversity drivers at 90 m resolution, grouped into four 
categories: microclimatic, microtopographic, anthropic, and edaphic. In order to evaluate the importance of the 
different categories, we grouped biodiversity drivers into four different clusters by categories. For each of the 
four clusters of biodiversity drivers, we modelled the observed species richness using two statistical techniques 
(random forest and Bayesian inference) and two modelling procedures (including or excluding a spatial 
component). All the biodiversity models produced were evaluated by cross-validation. Species richness was 
accurately predicted by random forest (Spearman correlation up to 0.85 and explained variance up to 67%). The 
results suggest that precipitation and temperature are important driving forces of species richness in the region. 
Nonetheless, a spatial component should be considered to properly predict biodiversity. This could reflect 
macroevolutionary underlying forces not considered here, such as colonization time, dispersal capacities, or 
speciation rates. However, the proposed biodiversity modelling approach can predict accurately species richness 
at the local scale and detailed resolution (90 m) in tropical areas, something that previous works had found 
extremely challenging. The innovative methodology presented here could be employed in other areas with 
conservation needs.   

1. Introduction 

Biological communities are threatened by intensifying human 
impact on ecosystems (Sheldon et al., 2011). A crucial challenge for the 
immediate future will be to conserve biodiversity under the current 

climate change scenario (Fadrique et al., 2018). To shed light on this 
global issue, biodiversity modelling is broadly employed in numerous 
fields (D’Amen et al., 2017). Biodiversity models can be used to support 
conservation planning (Guisan et al., 2013), or assessments of climate 
change effects on biodiversity (Randin et al., 2009; Urban et al., 2016). 
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Although biodiversity modelling has undergone substantial de
velopments, our ability to predict biodiversity at local scales remains 
limited (Urban et al., 2016; Yates et al., 2018). This is particularly true in 
tropical areas due to high species diversity/complexity (Jetz et al., 2012) 
and problems with data quality and availability (Cayuela et al., 2009; 
Loiselle et al., 2008). The tropical Andes is one of the most species-rich 
areas on the planet, as well as one of the most relevant regions for the 
conservation of biodiversity (Brooks et al., 2006; Myers et al., 2000). 
Significant climate change effects have been already noticed in the 
tropical Andes, reshaping the spatial distribution of tree species among 
other things (Fadrique et al., 2018). In this context, accurate predictions 
of local biodiversity would allow to build more realistic conservation 
plans (Mateo et al., 2019b). 

Models to predict biodiversity patterns vary (D’Amen et al. 2017, 
Guisan et al. 2017) from purely correlative (e.g., Gotelli et al., 2009; 
Guisan and Rahbek, 2011) to mechanistic (e.g., Mokany and Ferrier, 
2011). The different approaches try to predict various aspects of taxo
nomic diversity such as species composition (e.g., Mateo et al., 2012), 
species richness (e.g., Di Febbraro et al., 2018), and beta-diversity (e.g., 
Mokany et al., 2011), or even other dimensions of biodiversity such as 
functional or phylogenetic diversities (e.g., D’Amen et al., 2018). 
Regarding the modelling of local species richness (SR), the two most 
recurrent options are: 1) direct modelling of species numbers, a tech
nique named ‘macroecological modelling’ (MEM, Gotelli et al., 2009); 
and 2) stacking of species distribution models for individual species 
(S-SDMs; Dubuis et al., 2011; Mateo et al., 2012). These approaches 
have complementary difficulties (Guisan and Rahbek, 2011). MEM 
cannot derive any information about species composition, while S-SDMs 
can predict species composition, but it does not include environmental 
controls (biodiversity drivers) on SR that are hypothesized by MEMs, 
frequently resulting in an overestimation of SR (Dubuis et al., 2011; 
Mateo et al., 2012). 

The importance of different biodiversity drivers, such as climate, 
historical factors, or human impact, is another important challenge for 
biodiversity modelling (Mateo et al., 2017; Thuiller et al., 2013). In 
addition, these drivers vary from local scale environmental conditions to 
historical or biogeographical factors operating at larger regional levels 
(Mateo et al., 2017; Willis and Whittaker, 2002). 

In the near past, SR was postulated to be largely limited by the 
available energy (Wright, 1983), and it was commonly hypothesized 
that SR could be predicted through a measure of the available envi
ronmental energy, basically (precipitation and temperature; Currie, 
1991). Our current understanding of SR embraces supplementary hy
potheses (Cornell and Harrison, 2014; Harmon and Harrison, 2015), 
implying that our understanding of biodiversity patterns at the local 
scale requires additional information such as evolutionary or historical 
drivers (i.e., processes that take place at larger regional scales, Godfray 
and Lawton, 2001). At the local scale SR is shaped by the properties of 
regional species pools, which in turn are the result of speciation, 
immigration, range extension, diversification rates, regional area and 
geological age (Cornell, 2013; Cornell and Harrison, 2014). Conse
quently, zones with larger inputs of energy or constant climates (tropical 
areas) show greater species numbers, not only as a consequence of 
higher energy availability (Brown, 2014), but also due to higher sus
tained diversification rates and, subsequently, larger regional species 
pools (Cornell, 2013). Even for these hypotheses, and as a preliminary 
approximation, temperature, precipitation, and climate seasonality 
could be worthy SR predictors, although other drivers should be 
considered when possible (Guisan and Rahbek, 2011; Mateo et al., 
2017). Regional SR drivers, such as broad-scale environmental gradients 
(i.e., climate), could determine SR at broader scales; within that regional 
SR, local SR spatial patterns would be shaped by other environmental 
and stochastic factors, or niche and dispersal assembly rules (Guisan and 
Rahbek, 2011; Hubbell, 2001; Laliberté et al., 2009). Therefore, 
macroevolutionary dynamics (i.e., colonization time, differences in 
speciation rates, or dispersal limitation) would generate the difference 

in community assembly process (Benício et al., 2021) that could be re
flected in spatial richness patterns. 

Our first objective was to achieve a better understanding of the 
drivers that influence the spatial organization of plant assemblages in 
tropical forests at the landscape scale. Within this objective, we studied 
the well-sampled forests of the Madidi region along a ca. 4000 m alti
tudinal gradient in the eastern slopes of the Bolivian Andes (Fried
man-Rudovsky, 2012). Climate shifts occur dramatically across this 
altitudinal gradient. Therefore, our first hypothesis was that tempera
ture and precipitation should be the primary SR predictors, even though 
other factors could contribute to explain additional variation. To test 
this hypothesis, we evaluated models with or without spatial patterns. 
The idea was to generate spatial predictors that allow the model to 
consider the spatial structure of the training data (i.e., woody plant 
communities; see Dray et al, 2006, Peres-Neto et al, 2010). If macro
evolutionary dynamics (or other biodiversity drivers not considered 
here) are important in species richness assembly process at local scale in 
these tropical areas (Benício et al., 2021), improved results would be 
obtained with biodiversity models that consider a spatial pattern. 

Our second objective was to generate accurate predictions of SR at 
the local scale and fine resolution (90 m). Our second hypothesis was 
that if the biodiversity drivers were precisely generated in the previous 
step, reasonably accurate biodiversity models could be generated at the 
local scale. In the literature, multiple examples for predicting biodi
versity at coarse resolution (1-50 km) are available at the country level 
(Lessmann et al., 2014; Mateo et al., 2012) or regional extents in tropical 
areas (de la Estrella et al., 2012), but only a few examples attempt 
predicting biodiversity in tropical areas at the local scale and fine res
olution (e.g., Pouteau et al., 2015; Pouteau et al., 2019). In these works, 
the variables employed as predictors are mostly derived from remote 
sensing (Pouteau et al., 2018), as the normalized-difference vegetation 
index (Gillespie, 2005) or canopy structure (Fricker et al., 2015). To our 
knowledge, potential biodiversity drivers (i.e., climate, topographic 
heterogeneity, human impact) have not been employed as predictors 
during the modelling process at the local scale. 

Our aim was to implement various biodiversity models to better 
understand the processes that generate plant biodiversity in the Andes- 
Amazon gradient. The reliable model developed could be integrated into 
a conservation management strategy for the study area (Guisan et al., 
2013; Mateo et al., 2019b), and the proposed methodology may possibly 
be implemented to better understand and predict biodiversity patterns 
in other tropical megadiverse areas worldwide. 

2. Material and methods 

2.1. Study area and vegetation plots 

We studied mature forests of the Madidi National Park and sur
rounding areas in north-western Bolivia using inventories of temporary 
0.1-ha plots (20 × 50 m) across the Andes-Amazon gradient (latitudes 
–12.43◦ to –15.72◦, longitudes –69.48◦ to–66.66◦). A total of 397 plots 
were established from 250 to c. 4000 m elevation, including plots in dry 
tropical forests. Plots were located in forests with no signs of recent 
human disturbance, avoiding big canopy gaps or evident heterogeneity 
in soils or tree physiognomy within a plot. All woody plant stems ≥ 2.5 
cm dbh (diameter at breast height, measured at 130 cm from the 
ground) were inventoried following a standard protocol (Arellano et al., 
2016). The floristic database is maintained by the Missouri Botanical 
Garden and the dataset can be requested from the Madidi Project (http 
s://madidiproject.weebly.com/). Superficial soil samples (0–15 cm 
below the litter layer) were collected, air-dried, and sieved through a 2 
mm sieve to analyse their main physico-chemical properties. 

2.2. Biodiversity drivers (predictors) 

In order to understand the processes that generate and maintain 
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diversity, we considered potential plant biodiversity drivers in four main 
categories: climate, topography, anthropic, and edaphic. These drivers 
are expected to capture important factors for plant biodiversity at the 
local scale. 

Reliable estimation of microclimatic environments (i.e., derived 
from precise topography layers, resolution lower than 100 m) is crucial 
to comprehend how species interact with the environment, and it is 
progressively recognised as essential for predicting species distributions 
(Maclean et al., 2021). Here, a set of eight microclimatic variables were 
generated in the form of accurate (~90 m resolution) raster layers 
through a downscaling procedure (Mateo et al., 2019b) from variables 
available at a resolution of 30 arc-seconds (~1 km2 at the equator) in 
CHELSA 1.2 (Karger et al., 2017). First, to avoid multicollinearity, we 
implemented a pairwise correlation evaluation on all the accessible 
variables (monthly precipitation, and monthly minimum, maximum, 
and mean temperatures). In each pair with a correlation value greater 
than 0.7 (Dormann et al., 2013), we removed one climate variable. We 
obtained a final set of six representative climate variables: precipitation 
of the driest month (January), precipitation of the wettest month (July), 
mean temperature of the hottest month (October), mean temperature of 
the coldest month (July), maximum temperature of the hottest month 
(October), minimum temperature of the coldest month (July). Second, 
variables were downscaled from 1 km to 30 m resolution. For temper
ature variables, this was accomplished in R using local linear regressions 
(Mateo et al., 2019b) through a relationship of temperature with a 30 m 
resolution digital elevation model (DEM, https://www.usgs.gov/centers 
/eros). For precipitation variables, downscaling was accomplished by 
means of a bilinear approach using the resample function in R package 
raster. Third, after downscaling was completed, we generated three 
other climate variables: precipitation seasonality (July precipitation 
minus January precipitation), temperature seasonality (October mean 
temperature minus July mean temperature), and temperature spatial 
heterogeneity (standard deviation of mean July temperature in a win
dow of nine 30 × 30 m pixels). Finally, climate variables were generated 
at 90 m resolution by averaging values across nine 30 × 30 m pixels 
(except for temperature heterogeneity, which was already estimated at 
this resolution). 

Microtopography predictors (heterogeneity and moisture) were 
derived from a 30 m resolution digital elevation model as follows. First, 
we calculated linear aspect, slope (slope tool in ArcGIS 10.7), and 
accumulated flow into each down-slope cell towards the shortest surface 
distance to any stream (hydrology toolset in ArcGIS 10.7). Second, we 
calculated heterogeneity predictors (90 m resolution) by the calculation 
of the standard deviation in a window of nine 30 × 30 m pixels for 
altitude, linear aspect, and slope. The final accumulated flow variable 
was calculated at 90 m resolution as the mean of nine 30 × 30 m pixels. 

We obtained information on edaphic variables at each of the 397 
plots. Soil texture (percentages of sand, silt, and clay) was determined by 
Bouyoucos’ hydrometer method (Bouyoucos, 1962). Soil pH was 
determined in a 1:2.5 (w/v) soil-deionized water suspension. Organic 
carbon (C) content was determined by wet digestion (Walkley, 1947). 
Total nitrogen (N) was obtained with the semi-micro Kjeldahl method 
(van Reeuwijk, 2002). We used two extractive methods for Ca, Mg and 
K, applied to different sets of samples: (1) extraction using 1 M ammo
nium acetate solution, and (2) extraction using the Mehlich-3 solution 
(Mehlich, 1984). The results from both methods were standardized since 
both are linearly correlated according to Arellano et al. (2016). We also 
calculated the C:N ratio as this variable is considered an important in
dicator of soil fertility in forest soil quality assessments (Schoenholtz 
et al., 2000). 

Finally, the human impact at each plot was obtained from the 
‘‘human footprint’’ layer (~900 m resolution) created by Sanderson 
et al. (2009). These data represent the relative human influence in every 
biome as a percentage. As this variable was not correlated with altitude, 
a meaningful downscaling was not possible. 

To avoid multicollinearity across all sets of predictors, we excluded 

highly correlated predictors (Pearson’s r > 0.70, Dormann et al., 2013), 
keeping 19 of them (see Table 1). 

In order to evaluate our first hypothesis, the predictors (Table 1) 
were grouped in four clusters by considering biodiversity driver cate
gories (i.e., climate, topography, anthropic and edaphic). The four 
clusters were generated by the consecutive inclusion of a category: 1) 
climate (C); 2) climate, and topography (CT); 3) climate, topography, 
and anthropic (CTA); and 4) climate, topography, anthropic, and 
edaphic (CTAE). After this process, we obtained four clusters of pre
dictors each to compare the importance of biodiversity drivers by cat
egories to explain and predict woody plant SR patterns. The aim was to 
improve the understanding of ecological processes (Houlahan et al., 
2017), answering questions such as: (1) How essential are climate var
iables to predict SR in tropical areas at local scale? Because of the 
extensive elevational gradient considered, our hypothesis is that climate 
will be the main driver of SR, and the biodiversity model calibrated with 
exclusively climatic variables will be accurate and it will have high 
values of explained variance. (2) Do biodiversity estimations improve if 
other drivers are considered? If yes, what is the magnitude of this 
improvement? Our hypothesis was that the accuracy of the predictions 
would increase. Furthermore, as the drivers were included by steps and 
categories, we could evaluate the influence of the different drivers’ 
categories. 

2.3. Biodiversity modelling 

For each of the four clusters of drivers generated previously, we 
modelled the observed SR (n = 397 plots) using both random forests (RF, 
Breiman, 2001), and Bayesian inference using the integrated nested 
Laplace approximation (INLA, Rue et al., 2009). RF was implemented 
using a maximum of 500 trees and a Poisson distribution (D’Amen et al., 
2015). The process was repeated considering a spatial pattern. For RF, 
longitude and latitude were included as predictors (Sekulić et al., 2020). 
Bayesian spatial models included several covariates (see Table 1) and 
continuous spatially correlated random effects defined using a Matérn 
covariance function, defined using the SPDE approach with INLA 
(Krainski et al., 2019; Lindgren et al., 2011). Finally, we obtained 16 

Table 1 
List of biodiversity drivers considered after the selection of non-correlated var
iables classified by four main categories: microclimate, topography, anthropic 
and edaphic.  

Abbreviation Biodiversity driver (predictor) 

Microclimate drivers (90 m): 
Prec.1 Precipitation of the driest month (January) 
Prec.7 Precipitation of the wettest month (July) 
Tmed.10 Mean temperature or the hottest month (October) 
Tmed. 

Seasonality 
Temperature seasonality = Mean temperature hottest month 
(October) - Mean temperature coldest month (July) 

Topography drivers (90 m): 
Aspect.sd Standard deviation of linear aspect (heterogeneity) 
Aspect Linear aspect 
DEM.sd Standard deviation of altitude (heterogeneity) 
Slope.sd Standard deviation of slope (heterogeneity) 
Flow Flow accumulation (moisture) 
Distance Geographical distance to main streams (moisture) 
Anthropic driver (900 m): 
Human activity Human footprint 
Edaphic drivers (information available at plot level): 
Sand Total sand in the soil (%) 
Silt Total silt in the soil (%) 
Clay Total clay in the soil (%) 
C Organic carbon content (%) 
pH Soil pH 
K Available potassium content (mg/kg) 
Mg Available magnesium content (mg/kg) 
Ca Available calcium content (mg/kg) 
N Total nitrogen content (%) 
C:N Ratio between carbon content and nitrogen content  
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biodiversity models (4 clusters of predictors × 2 modelling techniques x 
2 spatial options). 

The predictive performance of the 16 biodiversity models was 
assessed by cross-validation. The models were fitted to a portion of the 
data, and these fitted models were used to make predictions on the 
remaining data. A good model is supposed to make good predictions on 
portions of the data that were not included during the model fitting 
process. In contrast, an overfitted model will make very accurate pre
dictions on the data that were used to fit the model, but poor predictions 
based on other observations, even if taken from the same population. We 
followed a cross-validation procedure, where the original dataset (397 
plots) was randomly divided into two partitions with a repeated (10 
times) procedure, using the 80% partition for training the models and 
the other 20% for model validation (D’Amen et al., 2015). For each 
split-sample repetition, a Spearman rank correlation between observed 
and predicted SR value was calculated as a metric of the predictive 
ability of the model. Finally, the mean and the standard deviation of the 
correlation values between the 10 predictions were calculated as the 
overall quality of the model. RF was the technique with higher corre
lation values (see Table 2) and the fastest (see, Mateo et al., 2019a), 
therefore it was selected as the reference technique. From now on, the 
analysis explained were executed only for RF to simplify the interpre
tation of results. 

We ran a final biodiversity model with 100% of the original dataset 
(397 plots) to avoid biases associated with subsampling (Araújo et al., 
2005). For RF, as model averaging enable model coefficients to fluctuate 
and improve the spatial transferability (Mateo et al., 2010; Yates et al., 
2018), we ran 100 times (replicates) with a repeated split-sample pro
cedure, and the replicates were fitted on the 80% data partition and the 
other 20% for validation. The final biodiversity model was the average 
of the 100 replicates. The accuracy of this model was assessed by the 
mean of squared residuals, the percentage of variance explained, and the 
relative under- or over-estimation of species ([observed SR – predicted 
SR] / observed SR), which could be seen as model residuals weighted by 
the number of observed species. 

The weighted residuals were plotted by forest types and altitude. 
Forest types classification was obtained from Arellano et al. (2015). The 
most distinct forest formation is the semideciduous dry forest, charac
terized by lack of precipitation during 4–5 months per year. The other 
forest types were characterized by regular altitudinal belts: lowland 
Amazonian forest (below 1000 m); lower montane forest (1000-1700 
m); intermediate montane forest (1700-2400 m); upper montane forest 
(2400-3100 m); and high Andean forest (3100-3731 m). 

Edaphic data were only available for the plots, so extrapolation to the 
complete study area could not include edaphic predictors. Therefore, 
spatial projections of the models were only generated for three predictor 
clusters: 1) climate, topography, and anthropic (CTA); 2) climate and 
topography (CT), and 3) climate (C). To explore if the biodiversity maps 
generated were different, we calculated the Spearman rank correlation 

coefficient between all pairs (Mateo et al., 2010). 

3. Results 

3.1. Field work 

Our plant database included 2257 species or morphospecies based on 
standardized taxonomy. The observed SR varies from 11 to 134 woody 
plant species per 0.1-ha plot. 

3.2. Comparison of modelling techniques 

RF biodiversity predictions outperformed Bayesian models when the 
spatial component was not considered. Higher correlation values were 
obtained for the four biodiversity driver models (Table 2). However, 
when a spatial component was considered, the results obtained were 
very similar for both approaches. 

3.3. Biodiversity drivers and species richness patterns 

Counting RF biodiversity predictions, whether the spatial component 
was considered or not, very similar values of correlation (Table 2), mean 
of squared residuals (Table 3), and percentage of variance explained 
(Table 3) were obtained, for the four biodiversity driver clusters. In 
addition, high correlation values (0.86 to 0.99, Table 4) were found 
when biodiversity maps were subject to pairs comparison: the biodi
versity model did not gain any considerable improvement by including 
more biodiversity drivers as predictors. Given that model complexity 
could have negative effects on ecological models (see Moreno-Amat 
et al., 2015 and references therein), we selected as the reference model 
the one calibrated with climatic variables only, i.e. it was considered the 
closest to the reality given the modelling technique and the available 
data (Hernandez et al., 2006). Otherwise, the model improves if a spatial 
component was included, the correlation value increase from 0.80 to 
0.85 (Table 2), and the variance explained percentage raised from 60.18 
to 67.74 (Table 3). We also tested the final model residuals spatial 
autocorrelation, adjusted with climatic variables and the spatial 
component through a Moran’s I index (I) with 99,999 permutations. We 
obtained a non-significant result for this test (I = - 0.027, p-value = 0.7); 
we concluded that we did not left out any important spatial driver of SR 
(Chevalier et al., 2021). 

An analogous trend was observed for the Bayesian model (similar 
correlation values, Table 2) when a spatial component was considered. 
However, if the spatial component was not included, the correlation 
values increase from 0.55 (only climatic variables) to 0.64 (climate, 
topography, anthropic, and edaphic). 

Final average RF models of each cluster of drivers produced similar 
SR projections across the whole study area (Fig. 1, Table 4). However, at 

Table 2 
The predictive performance of the biodiversity models generated with random 
forest (RF) and Bayesian inference (Bayesian) with or without spatial component 
(spatial) was assessed by the Spearman rank correlation between observed and 
predicted species richness value following a cross-validation procedure. The 
values in parentheses represent the standard deviation.  

Biodiversity driver clusters RF RF +
spatial 

Bayesian Bayesian +
spatial 

Climate, topography, 
anthropic, and edaphic 

0.81 
(0.02) 

0.84 
(0.02) 

0.64 
(0.09) 

0.84 (0.05) 

Climate, topography, 
anthropic 

0.80 
(0.02) 

0.83 
(0.02) 

0.58 
(0.09) 

0.83 (0.05) 

Climate, topography 0.80 
(0.02) 

0.83 
(0.02) 

0.54 
(0.08) 

0.83 (0.05) 

Climate 0.80 
(0.02) 

0.85 
(0.02) 

0.55 
(0.07) 

0.82 (0.04)  

Table 3 
Mean and standard deviation (in brackets) values of percentage of variance 
explained and mean of squared residuals of the final RF model (100 replicates) 
with or without spatial component and under four different clusters of biodi
versity drivers: a) climate; b) climate and topography; c) climate, topography, 
and anthropic; d) climate, topography, anthropic, and edaphic.   

Percentage of variance Mean of squared residuals 

Biodiversity driver clusters RF RF +
spatial 

RF RF +
spatial 

Climate, topography, 
anthropic, and edaphic 

60.47 
(2.52) 

65.17 
(2.30) 

211.70 
(14.29) 

187.32 
(11.96) 

Climate, topography, 
anthropic 

59.12 
(2.57) 

64.76 
(2.46) 

219.05 
(13.37) 

188.39 
(11.82) 

Climate, topography 54.60 
(3.08) 

63.74 
(2.70) 

244.64 
(15.96) 

192.93 
(13.15) 

Climate 60.18 
(2.43) 

67.34 
(2.37) 

212.95 
(13.01) 

175.02 
(11.99)  
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the local scale, the spatial patterns differences between them could be 
important. Indeed, our results suggest that climate drivers determine a 
general trend, which is then refined by spatial factors. 

3.4. Forest types, altitudinal gradient, and species richness prediction 

The reference biodiversity models (RF modelling technique and 
climate predictors) displayed a general trend to over-prediction in the 
less SR forests (high Andean and dry forest), and a slight under- 
prediction in the higher SR forests (lowland Amazonian, lower 
montane, and intermediate montane forests) (Fig. 2). Furthermore, the 
maximum SR observed was 134 species per 0.1 ha plot, and the 
maximum SR predicted was 110 species per pixel. The under-prediction 
error was reduced when a spatial component was included in the model 
(Fig. 2b). 

4. Discussion 

4.1. Biodiversity drivers and species richness patterns 

Our results supported our two main hypotheses. Accurate biodiver
sity models can be generated at the local scale, and climatic drivers are 
important biodiversity predictor in tropical areas when an altitudinal 
gradient is considered. However, climate drivers alone are not a suffi
cient explanation for biodiversity patterns. Indeed, a spatial component, 
at least, should be considered for a proper SR prediction (Table 1). 
Although the maximum cross-correlation obtained for the best model 
was 0.85 (Table 2), and the maximum explained variance was 67% 
(Table 3), there is still room for improvement. For example, the model 
presented a general trend to over-prediction in the forest with lower SR, 
while displaying an under-prediction in the forests with higher SR 
(Fig. 2). The inclusion of biogeographical, evolutionary and historical 
drivers during the modelling process could be needed to improve the 
results (Mateo et al., 2017), such as the regional species pool, coloni
zation time, dispersal capacities, or speciation rates (Benício et al., 
2021). If this were the case, they could be included in a step by step 
process (SESAM framework, Guisan and Rahbek, 2011), or considering a 
hierarchical scale framework (Mateo et al., 2019a). Finally, the impor
tance of stochastic factors in biodiversity patterns at the local scale 
(Chase, 2010), which was not possible to include in the modelling 
process (D’Amen et al., 2017), might be responsible for some of the 
unexplained variance. Moreover, some authors have postulated recently 
that climatic drivers exert greater control over plant species assemblage 
in temperate areas (Laughlin and Laughlin, 2013), whereas dispersal 
limitation and historical drivers have a greater influence on tree plant 
richness patterns in tropical regions (Kraft and Ackerly, 2010; Pouteau 
et al., 2019). 

Recently, precipitation has been associated with changes in tree 

Table 4 
Spearman rank correlation value by pairs when comparing all the RF biodi
versity maps generated, with or without spatial component (spatial) and under 
three different clusters of biodiversity drivers: climate (C); climate and topog
raphy (CT); climate, topography, and anthropic (CTA).   

C CT CTA C + spatial CT + spatial CTA + spatial 

C  0.95 0.89 0.87 0.87 0.86 
CT   0.93 0.88 0.92 0.90 
CTA    0.85 0.88 0.92 
C+spatial     0.98 0.98 
CT+spatial      0.99 
CTA+spatial        

Fig. 1. Predicted species richness by the final RF model with (bottom) o without (top) spatial component and under three different clusters of biodiversity drivers: 
climate (C); climate and topography (CT); climate, topography, and anthropic (CTA). Plots are represented as green circles above a digital elevation model (DEM). 
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species turnover in tropical areas (e.g., Esquivel-Muelbert et al., 2017; 
Hardy et al., 2012). These findings support the hypothesis that climate 
might drive the regional species pool, and subsequently the regional 
species pools have an important influence on the local tree communities 
(e.g., Lessard et al., 2012a; Lessard et al., 2012b). Our results meet with 
these past studies suggesting that precipitation is an important driver of 
woody biodiversity in tropical areas. 

Edaphic variables are hypothesized to have an important role in 
plant richness patterns in tropical areas (e.g., Gentry, 1988; Tuomisto 
et al., 2016). However, our results suggest that SR can be accurately 
predicted without considering edaphic drivers directly. Indeed, when 
dropping edaphic drivers from the model, the correlation value 
remained high (0.80), and the explained variance decreased only 
slightly (from 67% to 65%; Table 3). In contrast, edaphic variables were 
found crucial for predicting the distribution of plant species at the local 
scale by using the S-SDMs modelling framework (Cianfrani et al., 2019), 
where each species was modelled independently, and the edaphic con
ditions are relevant in the distribution of individual plant species. Here, 
we were predicting the observed SR numbers and edaphic factors did not 
show an important role; when soil factors were removed, topographic 
factors became important. This might be explained because it is possible 
to approximate some edaphic conditions through topographic infor
mation. Soil texture and pH are variables strongly associated with 
topographic factors as elevation and slope (Dessalegn et al., 2014), 
which would justify the small reduction in explained variance in the 
richness models when these edaphic variables are removed in the 
analysis but topographic variables were retained. The large elevation 
gradient studied (from 250 to c. 4000 m) can influence microclimate and 
thus soil-forming processes. Soil pH values showed a decrease with 
elevation and coarse sand sized particles increased significantly. Slope is 
related to soil erosion, morphology, and deposition processes. There
fore, soil fertility is lower on ridges and upper slopes than in hollows and 
valleys (Scholten et al., 2017). 

The anthropic variable did not seem to provide useful information 
during the modelling process. When we compared the models that 
included this variable (the climate, topography, and anthropic models) 
with models that did not include it (climate and topography models), 
they were practically equivalent (correlation value of 0.99 considering a 
spatial component, Table 4). This may be due to the coarse resolution of 

the information available for this variable (900 m). In the near future, 
information obtained by drones or other forms of high-resolution aerial 
or satellite imagery might be used to derive more precise and useful 
anthropic variables. 

The RF model was mapped under three different clusters of biodi
versity drivers (Fig. 1): climate; climate and topography; climate, 
topography, and anthropic. The three models mapped displayed similar 
regional trends for biodiversity patterns (see Fig. 1), however, at the 
local scale the differences between models could be important (see 
Fig. 1). Therefore, these comparisons among model projections reinforce 
our conclusion that climate alone is not a sufficient explanation for 
current biodiversity patterns, and other biodiversity drivers should be 
considered in biodiversity modelling frameworks. 

4.2. Macroecological biodiversity modelling framework 

Our results confirmed that random forests are reasonably resistant to 
overfitting (e.g., Mi et al., 2017), and we suggest their use to predict SR. 
Here, for the first time, we showed appropriate results for tropical areas. 
This means that it is possible to predict accurately SR, and better un
derstand the role of different biodiversity drivers along an altitudinal 
gradient. A macroecological modelling (MEM) framework was selected 
to predict SR because the importance of different biodiversity drivers 
can be evaluated (Mateo et al., 2016), although species composition 
cannot be predicted (Guisan and Rahbek, 2011), which was not the 
objective of this study. 

We achieved better results with RF than with the Bayesian procedure 
when we did not include space. For RF, we generated an ensemble model 
of 100 replicates with split-sample procedure, this could generate more 
flexible models (Mateo et al., 2010) than the Bayesian lineal models 
applied. However, when a spatial component was considered, the results 
obtained were very similar for both approaches. This highlights the 
importance of considering the spatial component during ecological 
landscape-scale modelling at precise spatial resolution. The inclusion of 
spatial components may be even more important than the statistical 
method employed. 

The accurate modelling performance obtained here was conditioned 
by the employment of appropriate modelling practices (Araújo et al., 
2019). We can emphasize three of them: (a) a proper selection of 

Fig. 2. Accuracy of the final averaged RF biodiversity model generated with only climatic predictors without spatial component (a) and with spatial component (b). 
It was measured by the calculation of residuals weighted by the number of observed species ([observed SR – predicted SR] / observed SR) and plotted by forest types 
and altitude. 
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ecologically meaningful biodiversity drivers in accordance with 
ecological theory (Mateo et al., 2017; McGill, 2010); (b) the generation 
of different variables at fine spatial resolution, as for example down
scaled climatic variables (Mateo et al., 2019b) or environmental het
erogeneity; (c) the availability of accurate and taxonomically 
standardized presence data at the local scale (D’Amen et al., 2017; 
Guisan et al., 2017). As a first and important step in studies related to 
biodiversity modelling, we suggest a cautious inspection of the data on 
the distribution of the species, the generation of appropriated environ
mental variables, and appropriate selection of the modelling approach 
and the parameterization. 

4.3. Future lines of research 

We have presented the first step to accurately predict SR in tropical 
areas at the local scale and precise resolution considering the impor
tance of different biodiversity drivers. Future studies could consider and 
improve some aspects as: 1) Compare the results with other biodiversity 
modelling frameworks as S-SDMs (Dubuis et al., 2011), or hierarchical 
Bayesian approaches considering different aspects of scale (Mateo et al., 
2019a). 2) Consider future climatic projections according to various 
climate change scenarios. 3) Model the effect of dispersal limitation and 
biotic interactions, which are important diversity drivers at local scales 
(Mateo et al., 2017; Pouteau et al., 2019). The integration and combi
nation with other biodiversity modelling techniques that consider these 
drivers (Guisan and Rahbek, 2011) could be worthy. 4) Integrate 
biodiversity models with information obtained from remote sensing 
(Pouteau et al., 2018) or drones (Saarinen et al., 2018) to derive land use 
data at fine resolutions (meters), and include these data as independent 
variables in the modelling process. 

5. Conclusions 

We have ratified the importance of microclimate (precipitation and 
temperature) controlling plant SR patterns at the local scale. Our results 
suggest that climate drivers determine a general trend in plant richness 
patterns, which is then refined by spatial factors. Since climate change is 
expected to produce major changes in biological systems in this area 
(Beaumont et al., 2011), special conservation measures should be 
considered to prevent it (Edwards et al., 2019). The modelling approach 
proposed here, combined with the generation of precise biodiversity 
drivers (90 m resolution), could generate reliable and precise forecast 
predictions and upgrade previous methodological approaches, as mul
tiple regression models (Fricker et al., 2015) or ordinary least squares 
(OLS) regression models (Tripathi et al., 2019), which usually have only 
been applied at regional or continental scales and coarse resolutions. 
The local and precise models obtained could serve as a valuable tool for 
local conservation planning (Mateo et al., 2019b) in the region. If ac
curate SR and spatial variables data are available, then the methodology 
presented here could be employed in other tropical areas to complement 
their conservation needs. 
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