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A vast literature indicates that environment plays a paramount role in determining
floristic composition in tropical forests. However, it remains unclear which are the most
important environmental factors and their relative effect across different spatial scales,
plant life forms or forest types. This study reviews the state of knowledge on the effect
of soil and climate on floristic composition in tropical forests. From 137 publications,
we collated information regarding: (1) spatial scale, continent, country, life form, and
forest type; (2) proportion of variance in floristic composition explained by soil and
climatic variables and how it varies across spatial scales; and (3) which soil and climate
variables had a significant relationship on community composition for each life form
and forest type. Most studies were conducted at landscape spatial scales (67%) and
mainly in South America (74%), particularly in Brazil (40%). Studies majorly focused
on trees (82%) and on lowland evergreen tropical forests (74%). Both soil and climate
variables explained in average the same amount (14% each) of the variation observed
in plant species composition, although soils appear to exert a stronger influence at
smaller spatial scales while climate effect increases toward larger ones. Temperature,
precipitation, seasonality, soil moisture, soil texture, aluminum, and base cations—
calcium and magnesium–and their related variables (e.g., cation exchange capacity,
or base saturation) were frequently reported as important variables in structuring plant
communities. Yet there was variability when comparing different life forms or forest types,
which renders clues about certain ecological peculiarities. We recommend the use of
standardized protocols for collecting environmental and floristic information in as much
as possible, and to fill knowledge gaps in certain geographic regions. These actions will
be especially beneficial to share uniform data between researchers, conduct analysis at
large spatial scales and get a better understanding of the link between soils and climate
gradients and plant strategies, which is key to propose better conservation policies
under the light of global change.

Keywords: life forms, forest types, spatial scales, soil moisture, phosphorus, aluminum, temperature,
precipitation
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INTRODUCTION

Which factors determine organisms distribution and abundance
patterns remains a paramount question in ecology (Sutherland
et al., 2013). In this sense, two main groups of environmental
variables have been of utmost interest: climate and soil-
related factors. Identifying the relationships between floristic
composition and these factors is a fundamental step to further
comprehend the underlying mechanisms (Whittaker, 1960;
Chave, 2008)—such as environmental filtering (Cadotte
and Tucker, 2017)—but can also provide insights for
ecosystems management and conservation (Libalah et al.,
2020). Consequently, ecologists have largely investigated the
effect of such factors over an array of biomes, among which
tropical forests have attracted a special interest. Tropical forests
are not only among the hottest terrestrial biodiversity hotspots
(Myers et al., 2000; Slik et al., 2015) but also offer a vast variety of
climatic and edaphic conditions (Townsend et al., 2008; Rahbek
et al., 2019).

The role of climate in plant species distribution has been
widely reported from earlier biogeographers (Humboldt and
Bonpland, 1805) to contemporary ecologists (Willig et al., 2003;
Morueta-Holme and Svenning, 2018), and thus climate has been
acknowledged as a strong predictor of large-scale patterns of
plant community composition across biomes (Hawkins et al.,
2003; Woodward et al., 2004). Although more stable in terms of
precipitation and temperature than other biomes, most tropical
forests experience from mild to marked seasonal variation in
rainfall (Golicher et al., 2008; Pennington et al., 2009) and
stark temperature differences exist in tropical montane forests
along elevation (Malhi et al., 2010). Those facts have been
acknowledged to influence the distribution of species in tropical
communities (Ter Steege et al., 2006; Engelbrecht et al., 2007;
Esquivel-Muelbert et al., 2017).

The role of soil variation in determining floristic composition
has been also broadly recognized, particularly at intermediate
and landscape scales (Phillips et al., 2003a; Tuomisto et al.,
2003b; Guevara Andino et al., 2021). In the hitherto most
exhaustive review of the effects of soil factors on floristic
composition in tropical forests, Sollins (1998) indicated that the
most important edaphic variables that affect evergreen lowlands
forests were, in a decreasing order of importance: phosphorus
availability, aluminum content, moisture (in terms of drainage
and water-holding capacity) and availability of base-metal cations
(potassium, calcium, and magnesium). Recent studies, however,
provide only partial support to these results, with differences
arising mostly from variation in the soil variables measured,
sampling methods, analytical approaches and spatial scales
considered, making generalizations difficult to establish (Chave,
2008; Baraloto et al., 2013; Garzon-Lopez et al., 2014).

The main goal of this study is to examine whether a systematic
literature review shows that variations in climate or soil account
for variation in floristic composition at scales ranging from
landscape to global. The specific goals were to: (1) describe the
state of knowledge (by spatial scale, continent, country, life form,
and forest type) concerning studies conducted in tropical forests
that investigate the effects of environmental determinism in plant

community composition; (2) ascertain the relative contribution
of soil and climate drivers in determining floristic composition
in terms of explained variance and how it varies across spatial
scales; and (3) identify which soil and climate factors show a more
significant influence with floristic composition for different life
forms and forest types. Through this approach, we aim to shed
light from scientific evidence compiled in the, to our knowledge,
largest literature review to date to understand which soil and
climate drivers influence floristic composition in tropical forests,
identify potential particularities for different life forms or forest
types and across spatial scales, and reveal gaps in knowledge.

MATERIALS AND METHODS

Literature Search and Inclusion Criteria
We conducted a systematic search in the Web of Science and
Scopus to identify publications that: (i) contained the strings
“tropical forest” and “floristic composition” and [“environmental
variables” or “climate” or “soil”] in their titles, abstracts and/or
main text; and (ii) were published in English, Portuguese, or
Spanish. We considered a climatic definition of the tropics
(Feeley and Stroud, 2018).

We excluded from the analyses (i) works that focused
exclusively on paleontology, remote sensing, agronomy,
silviculture, restoration, etc.; (ii) studies on non-forest vegetation
types (e.g., paramo, puna, or pampa); (iii) considering response
variables other than species composition (e.g., species richness or
diversity); and (iii) descriptive articles not assessing statistically
the effect of soil or climatic variables on floristic composition.
The literature browsing was finished in June 2020.

Data Retrieved
For the selected publications, we extracted data from 37
categorical, discrete, and/or continuous variables regarding: (i)
the spatial scale of the study: landscape (<100 km), regional
(100–1,000 km), continental (>1,000 km but one continent),
and global (more than one continent); (ii) the continent and
country investigated; (iii) as no studies consider the whole flora,
the life form(s) studied: trees, shrubs, palms, ferns, lianas, and/or
herbs; (iv) the forest type in relation to elevation (lowland
or montane) and in relation to rainfall seasonality (evergreen
or seasonal); (v) the sample vegetation grain size; (vi) the
minimum individual size [such as diameter at breast height
(DBH)]; (vii) the soil depth sampled; (viii) the percentage of
variance explained by environmental variables, including soil
variables, climatic variables, distance or space, and unexplained
variation; and (ix) the specific soil variables [pH, phosphorus
(P), potassium (K), calcium (Ca), magnesium (Mg), sodium
(Na), iron (Fe), manganese (Mg), zinc (Zn), copper (Cu),
aluminum (Al), silicon (Si), titanium (Ti), boron (B), nitrogen
(N), carbon (C), carbon nitrogen ratio (C/N), Cation Exchange
Capacity (CEC), electrical conductivity, exchangeable cations,
base saturation, organic matter, moisture and texture], and/or
climatic variables (precipitation, temperature, and seasonality)
analyzed and whether they had (1) or not (0) a statistically
significant effect on floristic composition.
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Data Analysis
To describe the state of knowledge concerning studies
investigating the effects of environmental determinism in
plant communities (goal 1), we explored the distribution of
studies by spatial scale, continent, country, life form, and forest
type. To assess the relative contribution of climate and soil in
plant species composition (goal 2), we estimated the frequency
distribution of the explained variation in floristic composition
with respect to soil and climatic variables, and how it changed
across spatial scales. Finally, to identify key environmental
variables driving floristic composition (goal 3), we calculated
the percentage of studies where each soil and climate variable
had a significant relationship on floristic composition for each
life form and forest type. Publications encompassing several
countries or considering multiple life forms, forest types or
spatial scales, were accounted independently when possible, so
one single study may eventually imply more than one record for
data analyses purposes.

RESULTS

Literature Search
We found 829 articles matching the search strings, of which only
124 met all the inclusion criteria. We incorporated 13 additional
studies from our daily-working database not including some or
any search strings (such as floristic composition) but falling into
the scope of this work. Overall, we considered 137 publications
(Supplementary Table 1). Yet a variable number of records were
considered for the different analyses, as some of the publications
reported results simultaneously at several spatial scales [e.g.,
landscape and regional (Normand et al., 2006)], and on different
life forms [e.g., trees, shrubs, and lianas (López-Martínez et al.,
2013)] or forest types [e.g., lowland and montane (Garibaldi et al.,
2014)]. Additionally, for the analyses related to goals 2 and 3
there was no information available in all the publications, so
the total number of records analyzed was lower than 137. Thus,
hereinafter we will refer to publications (n = 137) or records
(n 6= 137) depending on the scope of the analysis. We indicate
the sample size when presenting each of the specific results.

Most studies explored only soil effects on floristic composition
(55%), followed by those exploring both soil and climate (31%),
and those considering only climate (14%). A majority were
in English (91%), with Portuguese (7%), and Spanish (2%)
accounting for a minority.

Studies by Spatial Scales, Continents
and Countries, Forest Types, and Life
Forms
More than half of the publications (67%) reported results at
landscape scale, whereas 32% had a regional extent and 12%
covered a continental scope (Figure 1A and Supplementary
Table 1). Only a minority (<1%) encompassed global scales.

Regarding the geographical scope of the studies (Figure 1B
and Supplementary Table 1), a large amount reported
results from research conducted in South America (74%),

with Brazil leading the ranking (40%), followed by Peru
(21%) and Ecuador, Colombia, and Bolivia (15% each).
Central America and Mexico were investigated in 24% of
the studies, with Panama and Costa Rica concentrating the
largest amount (12% each), followed by Mexico (7%). Only
10% of the publications contained results from Asia. These
were spread over five countries, with Malaysia leading
the ranking (6%), followed by India (3%). Publications
for Africa were the scarcest, accounting only for 8%, and
distributed over eight countries, being Cameroon the most
representative (4%). Finally, just one publication (<1%) was
conducted in Oceania.

Most publications reported results on the effects of
environmental determinism on trees (82%) and shrubs
(47%), followed by palms (36%), ferns (30%), lianas (24%),
and lastly herbs (10%; Figure 1C and Supplementary Table 1).
Concerning forest types, most publications, ca. two thirds
(68.5%) were focused on evergreen forests, whereas seasonal
forests accounted for near a third (31.5%; Figure 1D and
Supplementary Table 1). A similar proportion exists between
lowland and montane forests (70.5 and 29.5%, respectively).

There was a high heterogeneity among publications in terms
of the soil and environmental variables considered, collection
methods, inventory sizes, minimum plant size, laboratory
protocols, and data analyses techniques (Supplementary
Table 1). Plot area ranged from 0.0001 ha in studies focusing
on herbs to 7,850 ha in studies considering trees, with plots
of 0.25 (14%), 1 (11%), 0.01 (7%), 0.04, and 0.1 ha (ca. 6%
each) being the most common. Minimum DBH ranged
from 1 to 30 cm, being 10 (30%) and 5 cm (27%) the
most common. Soil sampling depths ranged from 5 cm to
120 cm, depths of 20 (28%) and 10 cm (26%) being the most
common. There was a plethora of approaches to analyze soil
moisture, from measuring soil gravimetric water storage or
qualitatively defining soil drainage levels to estimate moisture
by considering distance to floodplains or the elevation relative
to nearby streams.

Variance Explained by Soil and Climatic
Drivers and Its Variation Across Spatial
Scales
Almost a third of the publications (41/137; Supplementary
Table 1) included analyses based on variance partitioning
methods—for example, PCA, CCA, or RDA (Borcard et al., 1992;
Legendre and Legendre, 2012)—to assess the effect of different
groups of environmental variables in species composition. Albeit
there was a high variability regarding the amount of variation
explained by soils (from 1 to 58%) and climate (from 0.2 to
82%), both on average explained the same amount (14% each;
Figure 2A). The amount of variance explained by soils and
climate combined ranged from 0.4 to 21% (mean 9%). The
amount of variance explained by distance and/or space ranged
from 0 to 66% (mean 12%), whereas the amount of unexplained
variance varied from 12 to 94% (mean 66%).

In relation to spatial scale (Figure 2B), our results showed
that the explanatory power of soil variables decreased as the
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FIGURE 1 | Distribution of 137 publications investigating the importance of soils and climate as drivers of floristic composition in tropical forests assorted by (A)
spatial scale, (B) geographic region –continents and countries–, (C) life form, and (D) forest type. Numbers above the bars represent the number of records for each
case. In (B) Guatemala, Honduras, El Salvador, and all Caribbean-island countries excepting Puerto Rico accounted for one record each but are not represented
due to space limitation.

spatial extent of the study increased. Conversely, climate variables
explained a larger variation of floristic composition as the spatial
extent increased.

Effect of Soil and Climate Variables on
Community Composition for Different
Life Forms and Forest Types
Soil variables probed to drive floristic composition in most
studies (statistically significant relationship in 96% of the
records, n = 135; Supplementary Table 1). Among all, moisture

(85%, n = 41), texture (66%, n = 95), Al (62%, n = 60),
Ca (59%, n = 90), organic matter (58%, n = 53), C/N
(58%, n = 12), and Mg (56%, n = 89) emerged as major
drivers of floristic composition in tropical forests, regardless
of the life form or forest type considered. Climate variables
also emerged as important correlates of floristic composition
(statistically significant relationship in 85% of the records,
n = 65; Supplementary Table 1): temperature (75%, n = 44),
precipitation (71%, n = 62), and seasonality (69%, n = 46).

For trees, soil moisture (87%), temperature (80%),
precipitation and seasonality (78% each) were the most
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FIGURE 2 | Percentage of variation (A) explained by soils, climate, distance/space, and unexplained and (B) by soil and climate across spatial scales in 41
publications investigating their relative importance as drivers of floristic composition in tropical forests using variance partitioning methods. Numbers above the bars
represent the number of records (sample size) for each case and in the pie chart the average percentage of variation. Landscape scale (<100 km), regional scale
(100–1,000 km), and continental scale (>1,000 km but one continent). Neither studies at global scales for any of the variables nor at continental scales for climate
variables were found.

important variables driving floristic composition (Figure 3A
and Supplementary Table 1). Other important variables
were soil texture (66%), Al (63%), organic matter (61%), base
saturation (57%), and CEC (56%). For shrubs, four variables
were particularly relevant: soil moisture (81%), precipitation
(80%), temperature and seasonality (75% each). Al (70%),
soil texture (64%), Fe (62%), base saturation (57%), and pH
(54%) also played an important role. For palms, the most
important variables were soil moisture (94%), temperature
(83%), precipitation and C/N (75% each), seasonality and Al
(73% each), texture (72%), base saturation (70%), and organic

matter (62%). Ferns were mainly associated to C/N (100%), soil
moisture (90%), exchangeable cations (85%), soil texture (78%),
precipitation (75%), temperature and organic matter (73% each),
Mg (68%), and Al (67%). For lianas the main predictor was base
saturation (100%), followed by soil moisture (83%), temperature
(80%), organic matter (78%), Fe (75%), pH (74%), soil texture
(71%), and seasonality. Herbs responded mainly to N and
precipitation (100%), soil moisture (80%), Al and exchangeable
cations (75% each) and P, Ca, Na, and temperature (67% each).

Across forest types, soil moisture was the only soil variable
consistently ranking among the three most important factors
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(Figure 3B and Supplementary Table 1). Soil moisture ranked
higher in seasonal [both in lowlands (92%) and montane (100%)]
than in evergreen forests [both in lowlands (85%) and montane
(83%)]. Similarly, precipitation showed a larger effect on seasonal
(71% in lowlands and 94% in montane) than in evergreen
forests (67% in lowlands and 78% in montane). Temperature
was more relevant in montane [both in evergreen (91%) and
seasonal (81%)] than in lowland forests [both in evergreen
(73%) and seasonal (69%)]. In the case of lowland evergreen
forests, other important variables were seasonality (73%), Ca
(67%), and texture (65%), whereas Al (82%), organic matter
(77%), seasonality (65%), and base saturation (64%) showed a
larger effect in lowland seasonal forests (Figure 3). For montane
evergreen forests, other relevant predictors were C/N (100%),
organic matter (87%), seasonality (75%), and moisture (67%). For
montane seasonal forests, seasonality (75%), soil texture (71%),
pH (67%), and base saturation (60%).

DISCUSSION

Knowledge Availability by Spatial Scales,
Continents and Countries, Life Forms,
and Forest Types
Most publications investigated floristic composition at small
spatial scales (landscape) and the number of studies decreased
toward larger ones (Figure 1A). While studies at regional and
especially landscape scales rely upon primary data, studies at
continental and global scales typically use data acquired by
different groups, which use different protocols in floristics (e.g.,
plot size, or minimum DBH) and soil characterization (e.g., soil
depth or moisture, and/or nutrients quantification methods; see
Supplementary Table 1). Despite this potentially leads to certain
noise, these studies currently are the only alternative to conduct
studies at continental and global scales. Given this need for
collaborative science to gain insights at these scales, the more
standardized the sampling protocols are, the better for the sake
of data integration from different sources (Baker et al., 2021).

The Neotropics is the most intensely studied biogeographical
region (Figure 1B). This is due, on one hand, to the creation of
research centers (e.g., the Organization for Tropical Studies, the
Smithsonian Tropical Research Institute or the Instituto Nacional
de Pesquisas da Amazônia) and field stations (Whitesell et al.,
2002), which have increased scientific research in countries as
Costa Rica, Panama, and Brazil (Bawa et al., 2004) while others
(e.g., Nicaragua or Honduras) remain understudied (Stocks
et al., 2008). This problem is emphasized upon consideration of
countries’ area, as few of the countries with larger number of
studies are relatively small (such as Costa Rica)—and vice versa—
which lead to certain regions being relatively understudied (such
as the center of the Amazon basin). Besides, albeit many studies
use external funds from temperate countries/institutions and
those projects could be conducted anywhere in the tropics, there
are practical limitations in some countries, such as weak systems
of protected areas, tedious bureaucracy, or lack of political
stability. All these factors hinder the capacity to conduct research

even if funding is not a constraint (Watkins and Donnelly, 2005;
Dangles et al., 2016). Meanwhile, on the other hand, certain
tropical areas in Asia and Africa are poorly studied compared to
the American countries (Clark, 1985), as most Asian an African
countries lack a science-oriented political agenda in comparison
to, for example, Brazil (Cayuela et al., 2018). By committing more
resources to science, countries can skew their capacity toward
increasing biodiversity research (Holmgren and Schnitzer, 2004;
Malhado et al., 2014). At this point, it is illustrative how countries
similar in size and incomes reveal contrasting number of studies:
Malaysia (5) and Thailand (0; Abd Manaf et al., 2019). More
resources are particularly needed to increase representativeness
of remote, under sampled and even unsampled regions, –e.g., the
central Congo Basin and New Guinea– (ForestPlots.net, 2021).

Trees are the dominant life form in forest ecosystems, and thus
most research on forest environmental determinism focuses on
trees (Figure 1C and Supplementary Table 1). Trees, however,
neither are representative of the whole plant community nor
always respond to ecological drivers in the same way as other
life forms (Ruokolainen et al., 2007; Pasion et al., 2018).
Hence, the consideration of life forms other than trees for
which investigations are scarce (e.g., lianas and herbs) might
render additional clues about the role of certain environmental
variables in driving floristic community composition (see section
“Particular Effects of Soil and Climate Across Different Life
Forms and Forest Types”).

Most papers in this review investigate lowland forests
(Figure 1D and Supplementary Table 1), which might be related
to the fact that they cover a larger proportion in the tropics than
montane forests (Bruijnzeel et al., 2011) and to the difficulty
of working in montane slopes (Bubb et al., 2004). Concerning
evergreen versus seasonal forests, the latter are understudied,
not only because they occupy a smaller geographical extent,
but also for their overexploited situation, consequence of
agriculture and livestock farming (Sánchez-Azofeifa et al., 2005;
DRYFLOR et al., 2016).

Soil and Climate Effects on Floristic
Composition and Variation Across
Spatial Scales
Our results indicated that, on average, 28% of the variance in
floristic composition was explained by environmental variables
(Figure 2A and Supplementary Table 1). This result is very
similar (26%) to the meta-analysis conducted by Soininen
(2014), which included organisms other than plants such as
microorganisms, invertebrates and vertebrates. It also resembles
the results found for plants in Baldeck et al. (2016; 24%), Neves
et al. (2015; 21%), or Arellano et al. (2016b; 20%). We found,
however, wide ranges in the variation explained by soil (from 1
to 58%) or climatic variables (from 0.2 to 82%). This variability in
results from different studies reflects true ecological differences
between the studied systems, but also spurious methodological
differences associated with the great heterogeneity in the
methods used (e.g., spatial scale and sample grain size
considered, sampling, and analysis techniques, etc.; Phillips et al.,
2003b; Magnusson et al., 2005; Arellano et al., 2016a). Without
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FIGURE 3 | Percentage of publications in which soil variables (brown bars) and climate variables (blue bars) had effects on floristic composition in tropical forests
attending to different (A) life forms and (B) forest types. Numbers rear to the bars represent the number of records (sample size) for each case.

methodological standardization –which in practice is hardly
achievable (see section “Conclusions and Future Directions”)– it
is not possible to disentangle both.

Soil variables have been related to floristic composition in a
large number of studies (e.g., Phillips et al., 2003a; Costa et al.,
2005; Bohlman et al., 2008). We found soils correlated with plant
composition to some degree in 96% of the records, explaining on
average 14% of variation in floristic composition. On the other
hand, climatic variables explained another 14% of the variation
in plant assemblages, detecting positive correlations with floristic
composition in 85% of the records. This influence of climate
in tropical floristic composition was already described by some
seminal papers and largely supported afterward (Gentry, 1988;
Chust et al., 2006; Saiter et al., 2016; Borges-Prata et al., 2018).

Considering the spatial scale of the studies shed clues
on the relative influence of soil versus climate variables on
plant communities. Our results showed that soil variables and
floristic composition were highly correlated at small spatial

scales, particularly at landscape ones, while climate variables
become more important as spatial scale increases (Figure 2B
and Supplementary Table 1). Those findings are well in
agreement with other studies (Palmer, 2007; Siefert et al., 2012)
since climate conditions at small spatial scales are relatively
homogeneous, whereas soil drivers at this scale can be highly
heterogeneous within just few kilometers (Lechowicz and Bell,
1991; Bell et al., 1993; Ryel et al., 1996). For instance, soil
moisture varies a lot depending on the microtopography of
the terrain–even within a region of uniform precipitation–
(Valencia et al., 2004; Ledo et al., 2013), and soil nutrients
and texture can also depend on landscape topography (Porder
et al., 2005; Weintraub et al., 2015) and rock outcrops (Isichei
et al., 1990). Unfortunately, the number of studies analyzing
variation partitioning in floristic composition at large spatial
scales are scarce or inexistent due to the difficulty of obtaining
the required data (see section “Knowledge by Spatial Scales,
Continents, Countries, Life Forms, and Forest Types”). This
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limitation hampers our capacity to assess the dominant effect
of different environmental drivers across the whole spectra
of spatial scales.

Particular Effects of Soil and Climate
Across Different Life Forms and Forest
Types
Regarding the relative effect of soil variables in floristic
composition, our results identified moisture (85% of the studies),
texture (66%), organic matter (62%), Al (62%), Ca (59%), C/N
(58%), and Mg (56%) as the most important drivers of floristic
composition considering all life forms and forest types. This is
well in agreement with the results reported by Sollins (1998),
who found that for lowland evergreen tropical forests the most
relevant factors were P, Al, moisture, availability of base cations
(K, Ca, and Mg), micronutrients (Zn), and N.

Soil moisture has been broadly reported as one of the
key edaphic variables driving floristic composition and plant
distribution in the tropics since it is a proxy for plant water
availability (Comita and Engelbrecht, 2009). Correspondingly,
it systematically appeared among the top three most important
soil variables across all life forms and forest types (Figure 3 and
Supplementary Table 1). The same occurs with base cations (Ca,
Mg, and K), which are crucial nutrients for plants and hence
key for soil fertility (Marschnell, 2012). Across life forms, either
single cations, their sum or other soil parameters that informs
about their availability for plants [e.g., CEC or base saturation
(Mikkelsen, 2011)] probed to play a crucial role in determining
floristic composition (Tuomisto et al., 2003a; Guèze et al., 2013;
Zuquim et al., 2019). Organic matter, by supplying nutrients and
providing CEC through its decomposition (Ross, 1993), is also
a relevant driver of floristic composition in tropical forests (e.g.,
White and Hood, 2004; Slik et al., 2009; Khairil et al., 2014).

Nitrogen is of essential importance for plants and, in many
ecosystems, its limitation leads to problems in plant growth
(Jarvis and Linder, 2000; Finzi et al., 2006). However, Sollins
(1998) pointed out N as the less influential of the soil factors
driving floristic composition in tropical forests. In the same
way, our results (Figure 3 and Supplementary Table 1) revealed
that N is of utmost relevance only for herbs (and C/N also for
ferns and in montane evergreen forests). Such results could be
explained by the fact that tropical species are more adaptable
than temperate ones to use whatever source of N available in
the soil, thus being this element of less significance than others
(Houlton et al., 2007).

In the case of phosphorus, while Sollins (1998) found that it
was the most critical soil variable, our review has shown it to be
of relatively limited relevance (46% on average, up to a 52% in
lowland evergreen forests and only ranking among the top six
important soil variables for herbs; Figure 3A and Supplementary
Table 1), and several authors neither identified this element as
key for community composition in Neotropical forests (Johnston,
1992; Tuomisto et al., 2003a; Macía et al., 2007; Higgins et al.,
2011). In fact, the role of P is one of the most controversial
topics in tropical soil ecology (Vitousek, 1984; Turner et al.,
2018). For instance, different soil parent materials, weathering

intensities and topographies can cause differences in P content
across landscapes (Walker and Syers, 1976; Mage and Porder,
2013). However, P depletion is thought to be unlikely in areas
of moderate uplift, such us in Central America or Southeast
Asia, due to the advection of P through the soil into the rooting
zone (Porder et al., 2007), and the Amazon basin and the rear
oriental Andean slopes might not be as impoverished in P as
previously though considering that wind-carried African dust
containing P—or other elements, such as Ca (Pett-Ridge et al.,
2009)—fertilize these areas (Yu et al., 2015). Furthermore, the
availability of P to plants is particularly challenging to measure
given the great range of its organic and inorganic chemical forms
occurring in soil and the variety of plant mechanisms acquiring
them (Turner, 2008; Condit et al., 2013).

Another important element for plants is aluminum, which is
toxic given its deleterious effects for plant growth and function
(Brunner and Sperisen, 2013). Indeed, Al ranked among the
top three soil variables for all life forms except for ferns and
lianas (Figure 3A and Supplementary Table 1). Tropical ferns
have been demonstrated to accumulate Al, what could explain
their role as pioneer species in high Al content soils (Schmitt
et al., 2017). Likewise, certain angiosperms families (such as
Rubiaceae) have also been proved to accumulate Al (Jansen et al.,
2002). Those facts could help to explain why lowlands forests’
composition is more influenced by Al content than montane one
(Figure 3B; Trujillo et al., 2019).

Soil texture is another influential variable, as not only
determines water availability for plants, but also other variables
linked with plant growth such as CEC (Dodd and Lauenroth,
1997), root respiration (Walters et al., 1992), and microbial
activity (Chau et al., 2011). Accordingly, soil texture was among
the top five soil variables for all life forms except for herbs
but even for this life form it had effect in 60% of the records
(Figure 3A and Supplementary Table 1).

If focusing on forest types, results for soil variables (Figure 3B
and Supplementary Table 1) were similar to those found for
life forms (Figure 3A and Supplementary Table 1) being
moisture, Al, texture and cations —and cations related variables–
among the top relevant variables. The most interesting difference
among forest types arises when focusing on pH. pH deeply
affects soil chemical and physical properties ultimately affecting
plants root system and nutrient uptake (Kidd and Proctor,
2001), and seem to have a larger influence on floristic
composition in seasonal than in evergreen forests. This fact
constitutes an interesting observation that requires further
research, especially considering the soil acidification of tropical
ecosystems (Lu et al., 2014).

Concerning the relative importance of climate variables in
floristic composition (Figure 3B and Supplementary Table 1),
our results show that temperature, precipitation, and seasonality
play roles of utmost relevance in tropical forests. Those variables
exert an influence on 75, 71, and 70% of the studies, respectively,
independently of life forms or forest types considered.

In the case of precipitation, it showed a larger effect on
seasonal (83% in average) than in evergreen forests (73%).
Precipitation results resemble those of soil moisture, which
similarly exerted a larger effect on seasonal (96% in average)
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than in evergreen forests (84%). Tropical seasonal forests, also
known as dry forests, are featured by the existence of a season
where rainfall is very scarce or even inexistent. Therefore, it
seems logical that precipitation determines more than any other
factor the floristic composition of such systems, since during the
dry season water availability becomes a limiting factor (Murphy
and Lugo, 1986; Pennington et al., 2009). In the case of herbs,
precipitation seemed to play a role of utmost importance, being
influential in 100% of the records. Although those values—far
from the percentages for the rest of life forms—could be biased
given the small number of records investigating this variable
for herbs (n = 5), a great reliance of herbs on precipitation
should not be unexpected given that their root system is more
limited compared with other life forms and obtains water mainly
from the upper soil, with no access to deep layers were water
is stored during larger periods (Fan et al., 2017). In the case
of temperature, it plays a larger effect on montane (86% in
average) than in lowland forests (71%), a non-surprising fact
given that temperature experiences large shifts along altitudinal
gradients, filtering species ability to thrive on mountain slopes
(Körner, 2007).

CONCLUSION AND FUTURE
DIRECTIONS

Our results highlight the major influence of soil and climate
on floristic composition, with some particularities across spatial
scales and for certain life forms and forest types. Nevertheless,
results show a great variability given the great heterogeneity of
variables investigated, and data collection and analyses methods
used across studies. In fact, the heterogeneity in methods
causes some limitations, especially when large scale studies using
primary data from different sources are to be conducted or
results from different studies are to be compared. In this sense,
although many of these pitfalls could be overcome by using
standardized field an laboratory protocols –such as the RAINFOR
initiative proposal for 1-ha plots (Phillips et al., 2018), a modified
Gentry’s system for 0.1-ha plots (Arellano et al., 2016a), or the
soil protocols from the Embrapa (Teixeira et al., 2017)– this is
far easier to be said than to be actually done. Each research’s
particular ecological questions addressed, or budget limitations
ultimately condition the sampling methods chosen. In any case,
detailed information about the methods used should always be
included in the publications, which is not always the case.

Finally, understanding soil and climate drivers of floristic
composition is fundamental to support conservation policies
aiming to protect species and their ecosystem services. In this
sense, developing more accurate soil and climate maps will not

only help us to envision toward which floristic composition
patterns could global change reshape tropical forests (Colwell
et al., 2008; Feeley et al., 2020), but also to map how
environmental gradients cause variations in plant functional
strategies and forest functioning across space (Asner et al., 2017)
and time (NGEE-Tropics Project, 2022).
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