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a  b  s  t  r  a  c  t

Land  use/cover  classification  is a key  research  field  in  remote  sensing  and  land  change  science  as  thematic
maps  derived  from  remotely  sensed  data  have  become  the  basis  for analyzing  many  socio-ecological
issues.  However,  land  use/cover  classification  remains  a difficult  task  and  it is especially  challeng-
ing  in  heterogeneous  tropical  landscapes  where  nonetheless  such  maps  are  of  great  importance.  The
present  study  aims  at  establishing  an  efficient  classification  approach  to  accurately  map  all  broad  land
use/cover  classes  in  a large,  heterogeneous  tropical  area,  as  a basis  for further  studies  (e.g.,  land  use/cover
change, deforestation  and  forest  degradation).  Specifically,  we first compare  the performance  of  para-
metric (maximum  likelihood),  non-parametric  (k-nearest  neighbor  and  four different  support  vector
machines  –  SVM),  and  hybrid  (unsupervised–supervised)  classifiers,  using  hard  and  soft  (fuzzy)  accu-
racy assessments.  We  then  assess,  using  the  maximum  likelihood  algorithm,  what  textural  indices  from
the gray-level  co-occurrence  matrix  lead  to  greater  classification  improvements  at  the  spatial  resolution
of Landsat  imagery  (30  m),  and  rank  them  accordingly.  Finally,  we  use  the  textural  index  that  provides
the  most  accurate  classification  results  to  evaluate  whether  its  usefulness  varies  significantly  with  the
classifier  used.  We  classified  imagery  corresponding  to  dry  and  wet  seasons  and found  that  SVM  clas-
sifiers  outperformed  all the  rest. We  also  found  that  the  use  of  some  textural  indices,  but  particularly
homogeneity  and entropy,  can  significantly  improve  classifications.  We  focused  on the  use of  the  homo-
geneity  index,  which  has so  far  been  neglected  in  land  use/cover  classification  efforts,  and  found  that
this  index  along  with  reflectance  bands  significantly  increased  the  overall  accuracy  of all  the  classifiers,
but  particularly  of  SVM.  We  observed  that  improvements  in  producer’s  and  user’s  accuracies  through  the
inclusion of  homogeneity  were  different  depending  on  land  use/cover  classes.  Early-growth/degraded

forests,  pastures,  grasslands  and  savanna  were  the classes  most  improved,  especially  with  the SVM  radial
basis function  and SVM  sigmoid  classifiers,  though  with  both  classifiers  all land  use/cover  classes  were
mapped  with  producer’s  and  user’s  accuracies  of  ∼90%.  Our  classification  approach  seems  very  well  suited
to  accurately  map  land  use/cover  of heterogeneous  landscapes,  thus  having  great  potential  to contribute
to  climate  change  mitigation  schemes,  conservation  initiatives,  and  the  design  of  management  plans  and

es.
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1. Introduction

Accurate land use/cover (LUC) maps derived from remotely
sensed data form the basis for quantifying and monitoring the
spatio-temporal patterns of LUC change. In most tropical regions,

LUC change is taking place at unprecedented rates (Gibbs et al.,
2010) and, therefore, accurate LUC maps are key for assessing
its implications for climate change, biodiversity conservation, and
peoples’ livelihoods. Nevertheless, LUC classification remains a
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hallenging task in heterogeneous tropical areas for several rea-
ons. A major problem lies in the difficulty of acquiring cloud-free
ultispectral imagery, which may  be partly overcome through the

se of radar imagery (Freitas et al., 2008), but their interpretation
s not straightforward in tropical areas (Almeida-Filho et al., 2007).
nother major drawback is related to the limitations (in terms of
ost, time, and accessibility) for carrying out fieldwork to collect
ufficient information on LUC classes, which hampers the training
nd validation stages of supervised and hybrid LUC classification
pproaches. Other constraints for accurate LUC mapping in trop-
cal regions are the usual lack of aerial photography, of previous
UC maps, and of ancillary data (e.g., digital elevation models –
EMs, geological maps) that may  be used to improve classification

esults.
To address the problems related to LUC classification in trop-

cal areas, a fundamental issue is the selection of the classifier.
he use of machine learning algorithms have gained momentum in
ecent years and some assessments of their relative performance
ompared to other classifiers have been conducted in the Amazon
egion (Lu et al., 2004; Carreiras et al., 2006). Specifically, support
ector machines (SVM) have been shown to attain high accuracies
n LUC mapping and outperform other algorithms (Huang et al.,
002; Foody and Mathur, 2004a; Pal and Mather, 2005; Kavzoglu
nd Colkesen, 2009; Mountrakis et al., 2011; Szuster et al., 2011).
VM have two  significant advantages for LUC mapping. First, since
VM classifiers seek to separate LUC classes by finding a plane
n the multidimensional feature space that maximizes their sep-
ration, rather than by characterizing such classes with statistics,
hey do not need a large training set but just the training sam-
les that are support vectors (Foody and Mathur, 2004b).  Thus, for
VM classifiers Foody and Mathur (2006) suggested to use small
raining sets composed of purposely selected mixed pixels con-
aining the support vectors, as this approach does not compromise
lassification accuracies and may  save considerable time. Second,
VM algorithms are independent of data dimensionality (Dixon and
andade, 2008), which is a key feature when using many spectral
ands such in hyperspectral imagery or when ancillary data are

ncluded in the classification process; conversely, for classifiers that
epend on dimensionality (e.g., artificial neural networks), train-

ng sets must exponentially increase in size to maintain classifier
erformance (Dixon and Candade, 2008).

Another fundamental issue to enhance LUC classification is the
dequate selection of input variables, which some authors suggest
ay  have the same impact as the selection of the classifier (Heinl

t al., 2009). Nevertheless, we argue that the combination of an
llegedly superior classifier such as SVM with appropriate ancillary
ata should improve results, as observed by Watanachaturaporn
t al. (2008) using multisource classification with SVM. Different
extural measures are a potential source of ancillary data and their
enefits for LUC classification have been highlighted in studies
sing different techniques and classifiers (e.g., Berberoglu et al.,
000; Chica-Olmo and Abarca-Hernández, 2000). Specifically for
orest classification, the inclusion of textural data has proven useful
or mapping forest age, forest types, detecting forest cover change,
nd characterizing canopy structure (e.g., Palubinskas et al., 1995;
ranklin et al., 2000; Zhang et al., 2004; Kayitakire et al., 2006;
alhi and Román-Cuesta, 2008), particularly with high spatial res-

lution imagery (Ota et al., 2011). A significant advantage of using
exture to enhance image classification in tropical regions, where
ther ancillary data sources may  not exist, is that textural data can
e extracted from the image itself. Thus, for example, the gray-

evel co-occurrence matrix method can be used to extract textural

ndices that can be included as data bands in the classification pro-
ess (Gong et al., 1992).

Given the current limitations for classifying LUC in complex
ropical areas, in this paper our main goal is to establish a robust
h Observation and Geoinformation 23 (2013) 372–383 373

classification approach to accurately map  all the broad LUC classes
considered in a heterogeneous tropical area. Specifically, we first
test if LUC classification results obtained with SVM classifiers com-
pare favorably with other parametric, non-parametric, and hybrid
classifiers; we then assess what textural indices from the gray-level
co-occurrence matrix lead to greater classification improvements
at the spatial resolution of Landsat imagery (30 m), and rank them
accordingly; and finally, we evaluate if the usefulness of a textu-
ral index for LUC classification varies significantly in relation to the
classifier utilized.

2. Study area, field surveys, and map  legend definition

2.1. Study area

The study area is located in the department of Beni, Bolivia
(Fig. 1). We  selected this large area because its landscapes are highly
heterogeneous as a transition across three biogeographic areas: (1)
montane tropical forests covering the foothills (over 400 m) of the
Andes to the west, (2) lowland tropical forests to the south and
center of the study area, and (3) wet savanna areas to the north
and east. Lowland forests are located below 400 m and contain
some deciduous species owing to a marked seasonality (dry and
wet seasons) (Guèze et al., in press). In wet  savannas vegetation is
controlled by small variations in ground elevation and relief, which
in turn are shaped by river dynamics and periodic flooding. Savanna
areas consist of swamps, marshes and lagoons with aquatic vege-
tation in the lowest areas; semi-natural grasslands and pastures in
areas less prone to be flooded; and scrublands and patches of forests
on mounds that do not get seasonally flooded. The vegetation for-
mations of the study area are also shaped by the land use type
and intensity of its different inhabitants, who range from Andean
indigenous peoples in montane forests, to local peasants, cattle
ranchers, and different native and colonist indigenous peoples in
lowland forests and savanna areas.

2.2. Field surveys and map legend definition

Two  field surveys were undertaken across the study area to
collect LUC data. The first focused on forested areas (old-growth,
early-growth, and degraded forests), water, bare soil, and infras-
tructure/urban categories, and was carried out in June–August 2009
(dry season). The second one took place in April–May 2010 (end of
the wet season) and focused on the large savanna areas that are
present across the study area, which mix with patches of pastures,
semi-natural grasslands and scrublands. Planning the acquisition of
ground-truth data was  done upon preliminary analyses of the most
recent Landsat-5 Thematic Mapper (TM) scenes (April 2009). LUC
data were acquired with handheld GPS units, with typical mean
positioning errors of 2–4 m in open areas and 4–6 m in forested
areas. Additionally, to assist in the processes of geometric correc-
tion and geometric accuracy assessment, we collected GPS  points
at road crossings and other human-made features on the ground,
and GPS tracks along the major roads and rivers across the study
area.

The definition of broad LUC classes was carried out prior to the
field surveys and was  based on previous knowledge of the area and
initial remotely sensed data exploration, which consisted in carry-
ing out several unsupervised ISODATA classifications on the most
recent Landsat imagery we had, and checking the classification
obtained by Killeen et al. (2007) for our study area. Nevertheless,

the definition of LUC classes was modified according to our field
observations and thorough examination of the spectral signatures
extracted from our field data. Eight broad LUC classes were finally
considered (Table 1).
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Table  1
Definition of land use/cover classes included in the study.

LUC Class Definition

Early-growth/degraded forest (EGDF) Forested areas with varying degrees of disturbance due to human activities (e.g., typically slash and burn agriculture or
logging) or natural dynamics (e.g., flooding regimes). Typically composed of regenerating trees, dead trees and logs, crops
such  as rice, manioc and bananas, sometimes with scattered old big trees. The canopy is rather open, structurally simple, and
the  average tree height is 3–10 m.

Old-growth forest (OGF) Forested areas with low levels of disturbance that consist of mature trees forming a dense and structurally complex canopy
with  few gaps and a typical height range of 10–40 m.

Water (W)  Water bodies such as creeks, rivers, shallow lakes, and deep lakes.
Bare  soil/urban (BSU) Sand banks along rivers, urban areas including towns, unpaved streets and roads.
Pasture (P) Areas typically used for cattle ranching, both in deforested and savanna areas. In deforested areas, pasture species are

frequently sown, while in savanna areas pasture species are usually natural. In both instances it is common to have varying
amounts of bare soil.

Savanna (S) Low relief savanna areas that are seasonally inundated and may  form swamps and marshes.
ross th
s or s
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Semi-natural grassland (G) Grassland patches that occur mostly ac
Scrubland (SC) Open canopy areas dominated by bushe

of  low quality; sometimes in the fringe 

. Materials and methods

.1. Satellite data and pre-processing

LUC classifications were carried out on Landsat satellite mosaics
omposed of two scenes (path 233, rows 70, 71). We  used two
ates (25/08/2001 and 17/04/2009, corresponding to the dry
nd the end of the wet seasons, respectively) so as to account
or differences in phenology, illumination, and reflectance, and
ence strengthen the classification comparison among different

lgorithms. We  chose Landsat data because of the large extent
e needed to cover and because Landsat is arguably the world’s
ost commonly used satellite to undertake ecological studies,

Fig. 1. Study area showing the most recent Landsat image mosaic (RGB:4-5-
e savanna areas, with very little or total absence of woody species.
hort trees, commonly present across the savanna areas, growing on dry ground
inity of forested areas.

including LUC classifications (Cohen and Goward, 2004), which
renders our results more comparable to those from other studies.
In addition, to carry out topographic and illumination corrections
we used the ASTER Global Digital Elevation Model (GDEM) v.1
(Fig. 1). GDEM v.1 has 30 m horizontal and 20 m vertical accuracies
at 95% confidence and therefore it is more accurate than the older
DEM provided by the Shuttle Radar Topography Mission (SRTM).

The two  25/08/2001 Landsat-7 Enhanced Thematic Mapper
(ETM+) scenes were acquired through the United States Geologi-
cal Survey (USGS). Their geometric accuracy was assessed through

the ground control points and GPS tracks we  had collected in the
field and we found misalignments of ∼0.5 pixels in both cases.
The two 17/04/2009 Landsat-5 TM scenes were acquired from the

3) and the range of altitudes and slopes extracted from the DEM used.
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Table  2
Size of training samples (# pixels) collected for each classification.

LUC class 2009 2001

Early-growth/degraded forest 10,025 5008
Old-growth forest 10,035 5003
Water 2506 2000
Bare soil/urban 1000 600
Pasture 5000 1000
Savanna 5000 1508
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Grassland 2005 1000
Scrubland 1352 1008

razilian National Institute for Space Research (INPE) and required
eometric and topographic corrections, which were carried out
ith MiraMon software using the procedure developed by Palà

nd Pons (1995).  The geometric errors obtained for both Landsat-
 TM images after the corrections were consistent with those of
he reference Landsat-7 ETM+ scenes (∼0.5 pixels). Subsequently,
ach pair of images corresponding to the same date was mosaicked
nd radiometric corrections were performed using the method
mplemented in MiraMon (Pons and Solé-Sugrañes, 1994). Finally,
he two mosaics were cropped to the extent of the area of inter-
st and, for each image mosaic (image hereafter), a cloud and
loud-shadow mask was manually built through visual interpreta-
ion and applied to, being thus each image ready for classification
nalysis.

.2. Classification algorithms

We  used a parametric classifier (maximum likelihood –
L), non-parametric classifiers (k-nearest neighbor – KNN, and

our different support vector machines – SVM: linear, polyno-
ial, radial basis function and sigmoid), and a hybrid classifier

unsupervised–supervised, contained in MiraMon software –
MHC). We  do not explain here how the ML,  KNN and SVM algo-

ithms work since detailed descriptions abound in remote sensing
nd pattern recognition textbooks (e.g., Tso and Mather, 2009).
MHC involves the use of an unsupervised ISODATA algorithm to

etrieve spectral classes, and a subsequent supervised classification
erformed on the ISODATA results using training areas to obtain
hematic classes (Serra et al., 2003). MMHC  has been successfully
sed to classify Mediterranean environments (Serra et al., 2003)
nd has also been used in tropical dry areas of Nicaragua to classify
egetation (García-Millán and Moré, 2008). To our knowledge this
s the first time MMHC  has been used to classify tropical forests and
avannas.

.3. Training data

We  carefully examined field data and spectral signatures across
he images to select the training sets from the two images. In

ost cases training data consisted of small polygons, though there
ere few instances in which single pixels were chosen in narrow

reas (e.g., roads, sand banks and rivers). Much care was taken to
catter training areas across each image to ensure they were rep-
esentative of the entire image, and to retrieve as many training
amples for each LUC class (Table 2) as needed to satisfy pre-
iously suggested criteria to establish an appropriate minimum
ample size (Tso and Mather, 2009). To enhance the comparability
f results between the classifications of both dates we  tried to use
he same training areas as much as possible (i.e., when no change
ad occurred). The Jeffries–Matusita transformed divergence index

as used to assess the separability of training data for both dates.
e confirmed that separability was rather high for water, bare

oil/urban and old-growth forest, but much lower for the other LUC
lasses.
h Observation and Geoinformation 23 (2013) 372–383 375

3.4. Textural data

We  extracted textural measures from the gray-level co-
occurrence matrix (GLCM), which is often employed to extract
textural information from remote sensing images (Haralick et al.,
1973). Specifically, we  calculated eight textural indices from six
Landsat reflectance bands (1–5, 7) using moving windows of 3 × 3
and 7 × 7 pixels. We  then used the six textural bands calculated for
each index and moving window size, along with the six Landsat
spectral bands, to carry out a maximum likelihood classification.
We assessed the potential usefulness of each index based on the
overall accuracies obtained for each classification and the pro-
ducer’s and user’s accuracies attained for the two forested classes.
We performed all calculations for both images.

3.5. Classification post-processing, accuracy assessment, and
comparison

We applied a 3 × 3-pixel majority filter to all the classifica-
tions to eliminate the salt and pepper effect prior to their accuracy
assessment. Reference data retrieval for accuracy assessment was
based on a stratified random sample selection, with sample units
taken at a minimum distance of 2 km to avoid the potential effects
of spatial autocorrelation (Congalton and Green, 2009). Reference
data were ground-truthed by expert-knowledge from the images
themselves (we did not use data collected in the field as they had
not been randomly selected due to logistic reasons). Sample units
lying on the fringe of two  or more LUC classes were not discarded
so as not to affect the randomness principle of accuracy assess-
ment. We  used the rule of thumb proposed by Congalton and Green
(2009) regarding the minimum reference dataset size required for
accuracy assessment, whereby 75–100 testing sample units per
thematic class should suffice for large areas and less than 12 the-
matic classes.

We carried out both hard and soft (also known as fuzzy) clas-
sification accuracy assessments. The soft classification assessment
may  enable a better evaluation of the behavior of a classifier, par-
ticularly regarding points that are challenging because they lie
on transition or mixed zones (Woodcock and Gopal, 2000), being
thus well suited to compare classifiers. For the soft assessment we
assigned by expert-knowledge two possible LUC  classes to each
reference point: a primary class, which coincided with that used in
the hard classification assessment and that was  supposed to rep-
resent the ground truth, and a secondary class, which was specific
to the soft assessment and was  considered to be right too because
it represented a good or acceptable answer given the location of the
reference point. However, whenever a reference point was  located
in a homogeneous area and its LUC class was  deemed clear, we
assigned the same LUC class to both primary and secondary classes.

For both types of accuracy assessment and for each classifica-
tion obtained we generated a confusion matrix (also known as error
matrix), which is the most standard method for remote sensing
classification accuracy assessment (Congalton and Green, 2009).
Through the construction of confusion matrices, for each assess-
ment we  retrieved the classification overall accuracy as a global
measure of classification accuracy, and the producer’s and user’s
accuracies as specific accuracy measures for each LUC class. We  did
not retrieve the kappa coefficient as some authors reported this
measure of global map  accuracy is problematic (Stehman, 1997;
Foody, 2004) because it does not have a probabilistic interpreta-
tion (unlike overall, producer’s, and user’s accuracies). Moreover,
the kappa coefficient has been shown not to be an appropriate map

accuracy measure for comparing the accuracy of thematic maps,
particularly when (as in this study) the reference data used have
always been the same (Foody, 2004). Finally, to assess the statisti-
cal significance of the difference in overall accuracy between each
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Table  3
Hard versus soft overall accuracy assessment of classifications obtained for 2009
and 2001 imagery using only reflectance bands. OA, overall accuracy; ML,  maximum
likelihood; SVM, support vector machine; KNN, k-nearest neighbor; MMHC, hybrid
classification.

Accuracy assessments 17/04/2009 25/08/2001

Classifier Hard OA Soft OA Hard OA Soft OA

ML 71.50 80.50 70.25 70.88
SVM linear 79.25 86.75 73.25 76.63
SVM polynomial (6th grade) 79.25 86.63 74.50 74.88
SVM radial basis function 79.38 87.00 73.88 74.25
SVM sigmoid 80.13 87.75 75.25 75.63
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KNN 72.63 80.50 75.75 76.75
MMHC 70.75 79.75 64.13 67.88

air of classifications, we used the McNemar test because we had
sed identical reference data to generate the confusion matrices
Foody, 2004).

. Results

.1. Improvements in overall land use/cover classification results
sing SVM

We  find that, for both images and types of accuracy assessment,
ll four SVM classifications attain the highest overall accuracy and
nly KNN for 2001 imagery is comparable to them (Table 3). On
he contrary, MMHC  attains the lowest overall accuracy for both
ates and assessments, though these are similar to ML  and KNN for
009 imagery. ML  results are far less accurate than those of SVM for
oth dates and assessments, whereas KNN results appear somehow
ontradictory as they are similar to SVM for 2001, and to MMHC

nd ML  for 2009, irrespective of the type of accuracy assessment.
e only evaluated differences in overall accuracy of hard accuracy

ssessments as the differences in overall accuracy of soft assess-
ents followed the same pattern (Table 3). Results of McNemar

able 4
cNemar tests showing the statistical significance of the differences in overall accuracy fr

sing  only reflectance bands. Codes are as follows: 0 – no significant (p > 0.05), 1 – hardly s
 extremely significant (p ∼ 0.0001). Left values refer to 2009 and right values to 2001 class
egative values indicate better performance of the column classifier.

17/04/2009|25/08/2001 SVM linear SVM polynomial 

ML  −4|−2 −4|−3 

SVM  linear 0|−2 

SVM  polynomial 

SVM  RBF 

SVM  sigmoid
KNN  

able 5
omparative assessment of the usefulness of using textural indices (extracted from the 

sing  the maximum likelihood classifier. No classification could be obtained using the co
ith  7 × 7-pixel moving windows are shown as they led to higher accuracies than indices 

A,  user’s accuracy; EGDF, early-growth/degraded forest; OGF, old-growth fores.

Accuracy assessments 17/04/2009 

OA PA EGDF UA EGDF PA OGF 

Without  texture 81.64 75.56 97.84 98.22 

With a textural index

Mean 84.17 88.89 98.52 98.33 

Variance 76.88 73.22 89.30 86.33 

Homogeneity 85.54 89.67 97.46 98.11 

Contrast 78.90 73.89 89.38 91.89 

Dissimilarity 84.03 88.44 94.54 94.78 

Entropy 84.92 88.33 96.95 96.78 

Second moment 82.20 81.67 97.35 97.78 

Correlation 76.55 82.67 86.61 88.78 
h Observation and Geoinformation 23 (2013) 372–383

tests are shown in Table 4 and three facts stand out. First, the sta-
tistical significance of the differences between any SVM and MMHC
is always maximum regardless of the date, whereas that between
any SVM and ML  ranges from significant to extremely significant
for 2001 and is always extremely significant for 2009. Second, KNN
shows no statistically significant differences with the least accurate
classifiers (ML  and MMHC) for 2009 imagery (although its overall
accuracy is slightly higher than theirs). However, for 2001 imagery
KNN shows no statistically significant differences with the most
accurate SVM classifiers, attaining in fact the highest overall accu-
racy of all the classifiers. Third, the relative performance of the
different SVM algorithms is very similar. There are no statistically
significant differences among them for 2009 and minor differences
for 2001 imagery.

4.2. Usefulness of textural indices for land use/cover classification

We distinguish among three groups of indices ranked in accor-
dance with their potential usefulness (Table 5): (1) homogeneity
and entropy, which provide significant improvements, (2) mean,
dissimilarity, and second moment, that lead to moderate improve-
ments, and (3) variance, contrast, and correlation, which actually
decrease classification accuracies when compared with those with-
out texture. Based on these results we focus hereafter on the use
of textural homogeneity (extracted from a 7 × 7-pixel moving win-
dow), thus discarding the use of other textural indices. We  did not
use entropy along with homogeneity so as not to increase data
dimensionality, and because we  tried different combinations of
entropy and homogeneity bands that did not increase the accu-
racies obtained using just homogeneity (results not shown).

4.3. Improvements in overall land use/cover classification results

using textural homogeneity

The use of the homogeneity index (HI or homogeneity hereafter)
greatly improves the results obtained by any classifier regardless

om a hard accuracy assessment among classifiers, for both 2009 and 2001 imagery,
ignificant (p ∼ 0.5); 2 – significant (0.5 < p ≤ 0.01); 3 – very significant (p ∼ 0.001); 4
ifications. Positive values indicate better performance of the row classifier whereas

SVM RBF SVM Sigmoid KNN MMHC

−4|−2 −4|−3 0|−4 0|3
0|0 0|−1 4|−1 4|4
0|0 0|0 4|0 4|4

0|0 4|0 4|4
4|0 4|4

0|4

gray-level co-occurrence matrix) in combination with spectral bands, carried out
rrelation index extracted from 2001 imagery. Only results from indices extracted

extracted from 3 × 3-pixel windows. OA, overall accuracy; PA, producer’s accuracy;

25/08/2001

UA OGF OA PA EGDF UA EGDF PA OGF UA OGF
84.35 81.67 85.78 97.23 97.11 88.73

98.22 82.74 94.67 74.35 95.33 83.54
87.60 77.21 83.89 74.46 87.11 91.48
94.95 86.21 90.11 86.18 95.22 91.76
87.05 81.63 87.78 80.94 91.11 92.24
94.46 82.85 91.22 87.43 93.44 95.68
94.16 85.21 90.33 83.64 93.78 92.75
88.80 84.76 85.56 86.03 95.00 88.14
90.18 – – – – –
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Fig. 2. ML,  KNN and SVM RBF classifications using reflectance bands along with homogeneity (HI) bands. Left column shows classifications for the entire image mosaic and
right  column shows a subset of 1280 × 944 pixels from the center of the mosaic where the high heterogeneity of the area can be observed. EGDF, early-growth/degraded
forest; OGF, old-growth forest; W,  water; BSU, bare soil/urban; P, pasture; S, savanna; G, grassland; SC, scrubland.
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Table  6
Overall accuracy assessment for 2009 and 2001 imagery using both reflectance and textural homogeneity bands. IOA, improvement in overall accuracy owing to the inclusion
of  textural homogeneity in the classification.

Accuracy assessments 17/04/2009 25/08/2001

Classifier Hard OA Hard IOA Soft OA Soft IOA Hard OA Hard IOA Soft OA Soft IOA

ML  78.88 7.38 85.25 4.75 79.38 9.13 81.50 10.62
SVM  linear 90.50 11.25 93.88 7.13 90.38 17.13 90.50 16.87
SVM  polynomial (6th grade) 89.13 9.88 92.25 5.62 89.88 15.38 90.13 15.25
SVM  RBF 92.63 13.25 95.63 8.63 96.13 22.25 96.25 22.00
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SVM  sigmoid 92.75 12.62 95.50 

KNN  79.75 7.12 86.25 

MMHC  72.00 1.25 81.38 

f the imagery date and the type of accuracy assessment (Table 6).
e find that the differences in overall accuracy are extremely sig-

ificant for all the classifiers, with the sole exception of the MMHC
lassification for 2009 imagery. Yet, even in that case, the overall
ccuracy increases 1.25% with the inclusion of homogeneity. Look-
ng carefully at the magnitude of the improvements achieved in
he classifications with the inclusion of homogeneity (Table 6), we
nd that there is a gradient from small to moderate improvements

n MMHC  (1.25% and 7.12%), moderate to large improvements in
L (7.38% and 9.13%) and KNN (7.12% and 11.00%), and large to

ery large improvements in the four SVM classifiers (ranging from
round 11% to 13% for 2009 imagery to around 16% and up to 22%
or 2001 imagery). Fig. 2 illustrates classification results showing
xamples of ML,  KNN and SVM radial basis function (RBF) with the
se of homogeneity.

Results from McNemar tests (Table 7) show that with homo-
eneity all four SVM algorithms outperform even further all the
ther algorithms. For instance, it is remarkable that without homo-
eneity and for 2001 imagery, KNN shows no significant difference
ith any SVM and actually performs a bit better than SVM linear

Table 4), whereas with homogeneity the statistical significance of

he superiority of SVM algorithms over KNN ranges from significant
o extremely significant (Table 7). Similarly, the superiority of all
VM over ML  classifiers increases for 2001 imagery with the inclu-
ion of homogeneity, as evidenced by the increase in the statistical

able 7
cNemar tests showing the statistical significance of the differences in overall accuracy

oth  2009 and 2001 imagery. Codes as in Table 4.

17/04/2009|25/08/2001 SVM linear + HI SVM polynomial + HI 

ML  + HI −4|−4 −4|−4 

SVM linear + HI 0|0 

SVM polynomial + HI 

SVM RBF + HI 

SVM sigmoid + HI 

KNN + HI 

able 8
ard assessment confusion matrices for the maximum likelihood classifications of Lands
eneity and right values to the classification with homogeneity. EGDF, early-growth/degr
avanna; G, grassland; SC, scrubland.

Classification data Reference data

EGDF OGF W BSU P 

EGDF 57 77 0 1 0 0 0 0 0 

OGF  15 3 94 90 1 0 0 0 0 

W  0 0 0 0 57 66 0 0 0 

BSU  0 0 0 1 11 14 88 96 6 

P  0 0 0 0 0 0 5 4 67 

S  0 0 1 1 30 20 0 0 13 

G  4 1 1 0 1 0 1 0 1 

SC 24  19 4 7 0 0 6 0 13 

Total 100  100 100 100 100 100 100 100 100 

Producer’s accuracy 57.0 77.0 94.0 90.0 57.0 66.0 88.0 96.0 67.0 
7.75 90.63 15.38 92.00 16.37
5.75 86.75 11.00 88.63 11.88
1.63 71.25 7.12 75.38 7.50

significance of their differences (see Tables 4 and 7). Therefore, all
four SVM classifiers optimize the use of homogeneity compared
to KNN, ML  and MMHC. Looking at the differences in performance
among the four SVM algorithms we observe that, with homogene-
ity, SVM sigmoid and particularly SVM RBF obtained the best results
for both imagery dates, thus maximizing the usefulness of homo-
geneity (without homogeneity all SVM performed similarly well).

4.4. Improvements in classification results by land use/cover class
using textural homogeneity

To assess what LUC classes benefit more with the inclusion of
homogeneity in terms of an increase in their producer’s and user’s
accuracy, we  present here the confusion matrices of ML,  KNN and
SVM RBF classifications. We do not show confusion matrices of
SVM linear, SVM polynomial and SVM sigmoid as overall SVM RBF
appears to be the best classification of all when homogeneity is
included. Neither do we show confusion matrices of MMHC  because
its improvement with homogeneity for 2009 is not significant, only
moderate for 2001, and the overall accuracy attained with this
classifier for either date is not satisfactory compared to the rest

of classifiers tested here. We focus on hard accuracy assessments
and show confusion matrices just for 2009 classifications though
the results presented are coherent with those obtained for 2001
imagery and with the fuzzy assessments of both dates.

 from a hard assessment among classifiers, using the homogeneity index (HI), for

SVM RBF + HI SVM sigmoid + HI KNN + HI MMHC  + HI

−4|−4 −4|−4 0|−4 4|4
−4|−4 −3|0 4|3 4|4
−4|−4 −4|0 4|2 4|4

0|4 4|4 4|4
4|3 4|4

4|4

at data (17/04/2009). Left values refer to the classification without textural homo-
aded forest; OGF, old-growth forest; W,  water; BSU, bare soil/urban; P, pasture; S,

S G SC Total User’s accuracy

0 0 0 0 0 1 3 58 81 98.3 95.1
0 0 0 0 0 0 0 110 93 85.4 96.8
0 0 0 0 0 0 0 57 66 100.0 100.0
8 0 1 9 5 0 0 114 125 77.2 76.8

84 7 9 0 0 1 1 80 98 83.7 85.7
0 65 66 0 1 9 6 118 94 55.1 70.2
0 0 2 60 67 5 5 73 75 82.2 89.3
8 28 22 31 27 84 85 190 168 44.2 50.6

100 100 100 100 100 100 100 800 800 78.3 83.1
84.0 65.0 66.0 60.0 67.0 84.0 85.0 71.5 78.9
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Table  9
Hard assessment confusion matrices for k-nearest neighbor classifications of Landsat data (17/04/2009). Left values refer to the classification without textural homogeneity
and  right values to the classification with homogeneity. EGDF, early-growth/degraded forest; OGF, old-growth forest; W,  water; BSU, bare soil/urban; P, pasture; S, savanna;
G,  grassland; SC, scrubland.

Classification data Reference data

EGDF OGF W BSU P S G SC Total User’s accuracy

EGDF 45 63 0 0 0 0 0 0 0 0 0 0 0 1 1 1 46 65 97.8 96.9
OGF 27 14 94 93 5 10 0 0 0 0 0 2 0 0 1 1 127 120 74.0 77.5
W  0 0 0 0 78 81 0 0 0 0 0 0 0 0 0 1 78 82 100.0 98.8
BSU  0 0 0 0 0 1 85 87 3 2 0 0 4 1 0 0 92 91 92.4 95.6
P  0 0 0 0 0 1 9 10 68 87 5 6 0 0 0 0 82 104 82.9 83.6
S  0 0 0 0 10 1 0 0 11 3 50 62 0 0 5 4 76 70 65.8 88.6
G 2 1 1 1  5 3 2 1 2 0 0 1 73 78 5 6 90 91 81.1 85.7
SC 26 22 5  6 2 3 4 2 16 8 45 29 23 20 88 87 209 177 42.1 49.1

Total  100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 800 800 79.5 84.5
Producer’s accuracy 45.0 63.0 94.0 93.0 78.0 81.0 85.0 87.0 68.0 87.0 50.0 62.0 73.0 78.0 88.0 87.0 72.6 79.7

Table 10
Hard assessment confusion matrices for SVM radial basis function classifications of Landsat data (17/04/2009). Left values refer to the classification without textural homo-
geneity and right values to the classification with HI. EGDF, early-growth/degraded forest; OGF, old-growth forest; W,  water; BSU, bare soil/urban; P, pasture; S, savanna; G,
grassland; SC, scrubland.

Classification data Reference data

EGDF OGF W BSU P S G SC Total User’s accuracy

EGDF 60 91 0 0 0 0 1 0 0 0 0 0 2 0 1 2 64 93 93.7 97.8
OGF  28 6 95 93 2 0 0 0 0 0 0 0 0 0 8 1 133 100 71.4 93.0
W  0 0 0 0 79 98 0 0 0 0 0 1 0 0 0 1 79 100 100.0 98.0
BSU  0 0 0 0 0 0 88 92 2 1 0 0 3 0 0 0 93 93 94.6 98.9
P  0 0 0 0 0 0 7 5 71 91 5 2 0 0 1 0 84 98 84.5 92.9
S 0 0 1  1 15 0 0 0 14 2 84 94 0 0 10 4 124 101 67.7 93.1
G  1 0 1 0 4 1 3 3 2 1 0 0 80 93 2 3 93 101 86.0 92.1
SC  11 3 3 6 0 1 1 0 11 5 11 3 15 7 78 89 130 114 60.0 78.1
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Total  100 100 100 100 100 100 100 100 1
Producer’s accuracy 60.0 91.0 95.0 93.0 79.0 98.0 88.0 92.0 

Table 8 shows the confusion matrices of ML  without and with
omogeneity, respectively. Regarding producer’s accuracies we
bserve very large improvements in early-growth/degraded for-
st (20%) and pasture (17%), and a moderate improvement in
rassland (7%) when homogeneity is included. Both savanna and
crubland remain with the same producer’s accuracies and old-
rowth forest slightly decreases (4%) but still has a 90% producer’s
ccuracy. Regarding user’s accuracies we see moderate improve-
ents in grassland (7.14%) and scrubland (6.39%), and larger ones

n old-growth forest (11.32%) and savanna (15.13%). Both early-
rowth/degraded forest and pasture remain with the same user’s
ccuracies. Results from the confusion matrices from 2001 imagery
re similar. The main differences in relation to producer’s accura-
ies are higher increases in pasture and grassland (48% and 23%,
espectively) while savanna and scrubland decrease 8% and 7%
espectively, whereas for user’s accuracies the main differences
elate to greater improvements in savanna and scrubland (28.47%
nd 19.53%), and a significant decrease in early-growth/degraded
orest (14.74%). Table 9 shows the confusion matrices of KNN.
emarkably, they are very similar both in values and trends to those
f ML.  The main differences are that, for KNN, savanna’s producer’s
ccuracy is improved in one date and that early-growth/degraded
orest’s user’s accuracy is not affected in either date.

Table 10 shows the confusion matrices of SVM RBF. With respect
o producer’s accuracies everything improves except old-growth
orest, which decreases to 93%. Producer’s accuracies gains are

ost remarkable for early-growth/degraded forest (31%) and pas-
ure (20%), but notable for savanna (10%), grassland (13%), and
crubland (11%). User’s accuracies improvements are very large

or old-growth forest (21.57%), savanna (25.33%), and scrubland
18.07%), and moderate for pasture (8.34%), grassland (6.06%), and
arly-growth/degraded forest (4.10%). Results from the 2001 clas-
ification are very similar though even greater improvements in
100 100 100 100 100 100 100 800 800 82.3 93.0
91.0 84.0 94.0 80.0 93.0 78.0 89.0 79.4 92.6

producer’s and user’s accuracies are observed. Therefore, SVM RBF
seems to maximize the use of homogeneity and it does so for all
eight LUC classes (not just for some as ML  and KNN do) and up to
very high levels of producer’s and user’s accuracies (typically >90%,
unlike ML  and KNN that did only achieve similar accuracies for
old-growth forest). Lastly, even though the other 3 SVM classifiers
did not perform as well as SVM RBF, they show very similar pro-
ducer’s and user’s accuracies values (usually >85–90%) and trends
of improvement by LUC class with the inclusion of homogeneity.

5. Discussion and conclusion

Three main findings stand out from our study: (1) SVM classifiers
outperform parametric (ML), non-parametric (KNN), and hybrid
(MMHC) classifiers, (2) homogeneity appears to be the most useful
textural index for LUC classification, and (3) SVM classifiers max-
imize the use of homogeneity, attaining overall, producer’s, and
user’s accuracies of ∼90% for all LUC classes. We  discuss each find-
ing and finalize with some concluding remarks highlighting the
usefulness of our classification approach.

Our first finding is consistent with research that has shown the
superiority of other non-parametric machine learning algorithms
for LUC mapping in the Amazon basin (Lu et al., 2004; Carreiras
et al., 2006) and demonstrates the usefulness of SVM for LUC clas-
sifications of heterogeneous tropical landscapes, something seldom
explored to date aside from few studies (e.g., Wijaya and Gloaguen,
2009; Liesenberg and Gloaguen, 2013). One substantial advantage
of SVM (and other non-parametric classifiers) over non-parametric
and hybrid classifiers, is that there is no need to assume any par-

ticular data distribution, which is more appropriate (particularly
when some LUC classes are highly heterogeneous as in this study)
and facilitates the use of ancillary data in the classification pro-
cess (Lu and Weng, 2007). Indeed, we have verified that some of
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ig. 3. Both examples show misclassification (top row) and accurate classification (b
ifferent LUC classes. The inclusion of the homogeneity index (HI) significantly imp
left  column) and P (right column) classes. EGDF, early-growth/degraded forest; OG
C,  scrubland.

ur training data do not follow a normal distribution, which may
artly explain why SVM have significantly outperformed the rest
f classifiers. Yet, possibly the main reason underlying the superi-
rity of SVM may  be related to the training sets we  have used and
he certain occurrence of mixed pixels within them. As Foody and

athur (2006) demonstrated, SVM use mixed pixels to obtain the
upport vectors they need for classifying data, whereas the rest of
lassifiers tested in our study cannot cope well with mixed pixels as
hey derive LUC class statistics from training samples to character-
ze such classes, which we  believe is the main reason why  ML,  KNN,
nd MMHC  have attained less accurate results than SVM. In the spe-
ific case of MMHC, given its poor performance we claim that it may
ot be appropriate for classifying tropical areas as they are typically
oo complex spectrally and, therefore, a very large training set may
e needed to derive an accurate supervised classification from the
any spectral classes obtained with the ISODATA classification.
Our second finding unveils the usefulness of using textural

omogeneity in LUC mapping. Specifically, our results suggest
hat homogeneity and (to a lesser extent) entropy may  be the

ost appropriate textural indices for LUC classification endeav-
rs, among those that can be extracted from the gray-level

o-occurrence matrix. However, while both textural indices have
een shown to describe nearly all the textural information con-
ained in sonar imagery (Huvenne et al., 2002; Blondel and Gómez
ichi, 2009), they have seldom been used to classify LUC from
 row) of reference data points (in red at the center of subsets) lying on the fringe of
the classification of these points in the case of SVM classifiers, particularly for EGDF
growth forest; W,  water; BSU, bare soil/urban; P, pasture; S, savanna; G, grassland;

multispectral imagery (especially homogeneity). Though few stud-
ies can be found that have examined or used entropy and
homogeneity to classify LUC from multispectral imagery (Chan
et al., 2003; Chehade et al., 2009), we  have not found any study
that exploits homogeneity on its own together with spectral bands.
In fact, studies comparing the performance of different textural
indices for image classification have not regarded homogeneity as
one of the most useful ones (Haralick et al., 1973; Gong et al., 1992;
Baraldi and Parmiggiani, 1995). Nonetheless, our study suggests
that homogeneity is a very powerful textural index for LUC mapping
as the improvements in overall accuracy of both hard and soft accu-
racy assessments for 2001 and 2009 classifications are extremely
significant irrespective of the classifier employed (with the sole
exception of MMHC  for 2009 imagery). We  believe the improve-
ments we  have obtained may  be explained by two  main reasons.

First, based on the fact that the combination of entropy and
homogeneity has not improved the results attained in preliminary
classifications with respect to those attained using just homogene-
ity, it seems that homogeneity by itself may  be able to characterize
most textural variability found in the imagery, thus improving clas-
sification results. Second, as illustrated in Fig. 3, we have observed

that the inclusion of homogeneity has often enabled the classifier
to correctly allocate ambiguous reference points, i.e., points located
in the transition between different covers (mixed pixels) or cor-
responding to transition covers not considered specifically in the
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ig. 4. Examples of non-Gaussian data distributions in training data (histograms refe
re  shown in Y axis and HI values in X axis).

lassification scheme. For instance, for 2009 imagery, when homo-
eneity was used the SVM RBF algorithm correctly classified 31
eference points more for the early-growth/degraded forest class.

e verified that 28 out of those 31 points lied in between two  or
ore LUC classes (normally either old-growth forest or scrubland),

nd only 3 points were located within homogeneous areas. Simi-
arly, 20 reference points more for the pasture class were correctly
lassified when using homogeneity, from which 17 were ambigu-
us. This trend is followed by other LUC classes and explains the
mprovements obtained using soft accuracy assessments. There-
ore, the inclusion of homogeneity alleviates the classification
roblem posed by spectrally mixed pixels.

Additionally, we have found two facts in conflict with previous
esearch. First, contrary to what was suggested by Augusteijn et al.
1995), small window sizes (7 × 7-pixel in our study) seem to accu-
ately characterize textural information in relation to LUC classes.

e believe this responds to the relatively small size of patches of

ome LUC classes such as early-growth/degraded forest, pasture
nd grassland, which therefore may  make texture to change over
mall areas. Second, contrary to the findings of Ota et al. (2011),
ur classification accuracies improve with the inclusion of textural
e homogeneity index (HI) bands and one example is given per LUC class; frequencies

information at 30 m spatial resolution, including producer’s and
user’s accuracies of forest types. This is important as demonstrates
the potential usefulness of using texture with Landsat imagery and
not just with very high spatial resolution images such as IKONOS
or QuickBird, which are frequently too expensive for operational
use and inappropriate when large areas are to be mapped.

Finally, our third finding reveals that SVM classifiers, and partic-
ularly SVM RBF and SVM sigmoid, optimize the use of homogeneity,
attaining overall, producer’s, and user’s accuracies of ∼90% for all
LUC classes (unlike the other classifiers tested, that could only
improve the producer’s, and/or user’s accuracies of some LUC
classes after the inclusion of homogeneity). One possible explana-
tion is that SVM classifiers are independent of data dimensionality
(Dixon and Candade, 2008) contrary to the rest of the classifiers
compared in this study. Since we  did not increase the size of the
training sets after including the six homogeneity bands in the clas-
sification, the improvements in performance of SVM classifiers

may  have been more significant than those of the rest, as being
dimensionality-dependent classifiers they would have required
bigger training datasets to increase their performance. In addition,
we have verified that some training data extracted from the six
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omogeneity data bands calculated for each Landsat image do not
ollow a normal distribution (Fig. 4), which may  explain why  non-
arametric algorithms deal with the inclusion of homogeneity in
he classification in a better way. This fact may  also explain why
ertain LUC classes show large improvements in producer’s, and/or
ser’s accuracies while others are not seemingly affected or may
ven slightly decrease their accuracies. Further research should
ddress this issue more in-depth and better analyze differences in
isclassification errors among LUC classes.
Our findings are promising because accurate mapping of land

se/cover is highly challenging over heterogeneous areas, partic-
larly in tropical regions, and yet this task is key to conservation

nitiatives, climate change mitigation strategies, and the design of
anagement plans and rural development policies. For instance,

ur classification approach has enabled us to map  the two  forested
lasses (early-growth/degraded forest and old-growth forest) with
roducer’s and user’s accuracies >90% for both Landsat imagery
ates (corresponding to wet  and dry seasons). These results suggest
hat our approach is well-suited to map  and monitor tropical for-
st cover change as needed for ecological assessments and REDD+
chemes. Similarly, the rest of land use/cover classes included
n this study were mapped to producer’s and user’s accuracies
f ∼90%, thus rendering our approach very interesting too for
and change analysis, ecological studies, and natural resource
ssessments in areas other than forests. Finally, our classifica-
ion approach presents the advantage of being easy to implement,
s both the calculation of the homogeneity index and the pres-
nce of SVM classifiers are readily available in remote sensing
oftware, and cost-effective, as SVM classifiers may  use smaller
raining datasets without compromising classification accuracy.
mportantly, the very accurate results obtained with this approach
uggest its great potential for land use/cover mapping in other trop-
cal areas and, quite possibly, in non-tropical areas too, something

e will assess in the near future.
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