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Summary

1. The stacking of species-distribution models (S-SDMs) is receiving attention by conservation researchers

because this approach is capable of simultaneously predicting species richness and composition. However, the

steps required to build S-SDMs implies at least two choices that influence its predictive performance which have

not been extensively assessed: the selection of themodelling algorithm and the application of a threshold to trans-

form the species-distribution models into binary maps to be added together to build the final S-SDM. Our goal

was to provide guidelines concerning the best combinations of modelling algorithms and thresholds with which

to buildmore accurate S-SDMs.

2. Wegenerated 380 S-SDMs of 1224 tree species inMesoamerica by combining 19 distributionmodellingmeth-

ods with 20 different thresholds using presence-only data from the Global Biodiversity Information Facility. We

compared the predicted richness and composition with inventory data obtained from the BIOTREE-NET forest

plot database. We designed two indicators of predictive performance that were based on the diversity factors

used to measure species turnover: a (shared species between the observed and predicted compositions), b and c

(the exclusive species of the predicted and observed compositions respectively) and compared them with the

Sorensen and Beta-Simpson turnovermeasures.

3. Our proposed indexes and the Sorensen index proved suitable as indicators of predictive performance for S-

SDMs, whereas the Beta-Simpson turnover measure presented issues that would prevent its application to evalu-

ate S-SDMs.

4. Some modelling methods – especially machine learning and ensemble model forecasting methods performed

significantly better than others in minimizing the error in predicted richness and composition. Our results also

points out that restrictive thresholds (with high omission errors) lead to more accurate S-SDMs in terms of spe-

cies richness and composition. Here, we demonstrate that particular combinations of modelling methods and

thresholds provide results with higher predictive performance.

5. These results provide clearmodelling guidelines that will help S-SDMmodellers to select the appropriate com-

bination ofmodellingmethods and thresholds to buildmore accurate S-SDMs, and therefore will have a positive

impact on the quality of the diversitymodels used to assist conservation planning.

Key-words: BIOTREE-NET, species composition, species richness, stacked species-distribution

models

Introduction

Data on biodiversity distribution to be used in decision mak-

ing, conservation and the management of natural resources

have been, and are being extensively gathered around the

world. There are collaborative initiatives to increase the public

availability of biodiversity data via World Wide Web, such as

GBIF (Global Biodiversity Information Facility; URL: www.

gbif.org; over than 330 million georeferenced records), the

TROPICOS database (Missouri Botanical Garden; URL:

www.tropicos.com; over than 4 million records) and the Atlas

of Living Australia (URL: http://www.ala.org.au/; more than

20 million georeferenced records). Some issues, however, are

limiting its application in conservation planning, including:

coarse spatial resolution, geographical gaps, insufficient bud-

get to execute field work and the lack of qualified taxonomists

(Yesson et al. 2007; Cayuela et al. 2009).

The lack of reliable biodiversity data for conservation plan-

ning has led to the development of modelling methods based*Corresponding author. E-mail: blasbp@ugr.es
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on ecological theory and GIS technologies. Species-distribu-

tion models (sensu Guisan & Zimmermann 2000; SDMs

hereafter) emerged in this context as tools to generate continu-

ous maps of habitat suitability or presence probability from

continuous or discrete environmental variables and incomplete

presence data. After years of ongoing development and testing,

SDMs are now offering a valuable contribution to the design

of management plans for endangered species worldwide,

climate-change assessment, invasive-species management or

the elucidation of paleo-distributions (for some examples of

such applications, see Williams et al. 2009; Skov & Svenning

2004; Richardson et al. 2010; Lorenzen et al. 2011).

SDMs have also been used to predict species richness and

composition based on the assemblage of single predicted spe-

cies ranges, following the ‘predict first, assemble later’ principle

proposed by Ferrier & Guisan (2006). This approach has been

recently referred to as ‘stacked species-distribution models’ (S-

SDM hereafter) by Guisan & Rahbeck (2011) because it

involves the aggregation (stacking) of SDMs from different

species inhabiting the same geographical region. The rationale

behind S-SDMs relies on the Gleason’s individualistic concept

of continuum (Gleason 1926), in which the abundance optima

of a given set of co-occurring species are independently distrib-

uted along different environmental gradients. At least four

steps are required to build an S-SDM for a given pool of target

species: (1) selection of an SDMmethod (Elith et al. 2006); (2)

SDMcalibration for each target species; (3) conversion of each

single SDM from a continuous suitability map to a presence/

absence binary map using a threshold criterion (Liu et al.

2005; Jim�enez-Valverde & Lobo 2007; Freeman & Moisen

2008) and (4) summation of the binarymaps to build a richness

model, and formulation of a presence/absence matrix to repre-

sent species composition.

S-SDMs do not account for biotic interactions or any con-

straints in the maximum number of species potentially occur-

ring in the same geographical unit. Consequently, a

significant level of overprediction error in species richness

should be expected (Gioia & Pigott 2000; Algar et al. 2009;

Newbold et al. 2009; Dubuis et al. 2011; Mateo et al. 2012;

but see Lehmann, Leathwick & Overton 2002). However,

there is also evidence that the choice of one or another SDM

method and the selection of the threshold to transform

SDMs into binary maps significantly affect the overpredic-

tion error of S-SDMs. Regarding the selection of SDM

methods, Mateo et al. (2012) generated two different kinds

of S-SDMs, one derived from the ensemble of six SDM

methods and the other derived from an ensemble of a subset

of six such SDM methods based on their higher AUC

values, and found that the results of the ensemble of all

SDM methods were more reliable than the ensemble of the

best SDM methods. Regarding threshold selection, Pineda &

Lobo (2009) have found that the representation of species

richness provided by an S-SDM varied along different

thresholds, and that the fine tuning of thresholds for each

single species significantly reduced the overprediction error.

The general goal of the present study is to contribute to the

research on the performance of S-SDMs and to provide guide-

lines for selecting the best SDM algorithms and the most suit-

able threshold criteria to build more accurate S-SDMs,

considering two outcomes: species richness and composition.

For this, we generated 380 S-SDMs based on the predicted

ranges of 1224 tropical tree species inMesoamerica by combin-

ing 19 SDM and ensemble methods with 20 threshold criteria

using presence-only data from the Global Biodiversity Infor-

mationFacility (GBIF), andwe compared the outcomes in spe-

cies richness and composition with ground-truth information

provided by the BIOTREE-NET forest plot database (Cayuela

et al. 2012). Specifically, we aimed to answer the following

question:Which combinationof SDMalgorithms (or ensemble

method) and threshold criteria maximize the performance of

S-SDMs in terms of species richness and composition?

Materials andmethods

STUDY AREA, PRESENCE DATA AND PREDICTIVE

VARIABLES

Our study area comprised the Mesoamerican region (southern Mexico

and Central America), within the limits 2º 30’ N; 7º 10’ N; 102º 15’ W;

77º 10’ W (geographical coordinates, datum WGS84). The target

region is known to be one of the most important biodiversity hotspots

on earth, with almost 2900 endemic plant species (Conservation Inter-

national 2011), but is threatened because of habitat fragmentation and

forest degradation (Chacon 2005).

We compiled a list of 2793 target tree species from the BIOTREE-

NET forest plot database (Cayuela et al. 2012). The species nameswere

standardized using The Plant List (http://www.theplantlist.org/) as a

reference checklist. We searched the GBIF database for such species

and all their synonyms and downloaded 742 385 records (Fig. 1). We

selected GBIF as presence-data source because it includes the records

of the Missouri Botanical Garden’s TROPICOS database, that has

been applied before to model tree distribution in Mesoamerica (Goli-

cher et al. 2012a; Golicher, Cayuela & Newton 2012b). Despite its

obvious sampling bias in tropical areas (Feeley & Silman 2011), GBIF

Fig. 1. Modeling area for the target species. The gray dots represents

the processedGBIF presence records of themodeled 1224 species.
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provides a reasonable snapshot of biodiversity distribution in

Mesoamerica, without the commission error that should be expected

from the application of species rangemaps (La Sorte &Hawkins 2007).

To prepare a reliable presence dataset, we cleaned the data following

these steps: (1) deletion of duplicate records; (2) reduction of spatial

aggregation by ensuring aminimumdistance of 30 kmbetween consec-

utive presence records and (3) rejection of species with less than 30 pres-

ence records. Finally we obtained data for 1669 species. To build an

evaluation dataset, we computed the observed composition and rich-

ness for 250 cells of 10 9 10 km resolution where data from the BIO-

TREE-NET database were available (Fig. 2). To avoid overlap

between GBIF and BIOTREE data, the presence records overlapping

such 250 cells were not used as input for SDMs.

Following the guidelines provided by Williams et al. (2012), we

selected a comprehensive set of environmental variables which have

been shown to influence the distribution of tropical trees in the study

area (Golicher et al. 2012a; Golicher, Cayuela & Newton 2012b). In

the process of variable selection, we set the maximum correlation

between variables at 0�5 Pearson’s correlation index. The variables

selected were: mean diurnal temperature range, minimum temperature

of coldest month, precipitation of wettest month, precipitation of driest

month and precipitation seasonality, taken from the Worldclim data-

base (Hijmans et al. 2005); human footprint (Sanderson et al. 2002);

average and standard deviation of the normalized difference vegetation

index (NDVI; Tucker, Pinzon & Brown 2004) and topographic diver-

sity, derived from the Shuttle Radar Topography Mission elevation

model (USGS 2004) in the GRASSGIS environment (GRASSDevel-

opment Team 2011).

SDM CALIBRATION AND EVALUATION

The GBIF presence data and the predictor variables were used to cali-

brate 13 modelling methods and five ensembles (see Ara�ujo & New

2007) computed by the arithmetic average for each species (see Table 1

for further information). To capture the complete response curves of

the species to the environmental variables, wemodelled the distribution

of the target species for the whole American continent. The modelling

area was within the limits 72º 00’ N; 55º 45’ S; 141º W; 34º 45’ W and

comprised 590 998 cells at 10 km spatial resolution. Once the continen-

tal models were generated, we clipped the Mesoamerican region, con-

stituting 12 249 cells at the same resolution as the continental models.

To evaluate the predictive performance of the SDMs we applied the

area under theROC curvemethod (AUC; Fielding &Bell 1997), which

is a suitable method to compare models for the same species and study

area, executed with different algorithms (Lobo, Jim�enez-Valverde &

Real 2008). The AUC values for each model were computed by k-fold

validation (five groups) with the ‘evaluate’ function of the R package

‘dismo’ (Hijmans et al. 2012), using a set of 5000 random points as

pseudo-absences for each species, avoiding overlap with the presence

points. To ensure comparable S-SDMs for all the modelling methods

in Table 1, we used only the species with all their SDMs and ensembles

withAUCvalues higher than 0�65.

S-SDM CALIBRATION AND EVALUATION

We built 380 S-SDMs grouped in 19 ‘S-SDM series’. Each S-SDM

series was the result of stacking all the SDMs of each of the 18

modelling or ensemble methods presented in Table 1, plus another

built by stacking the best SDM for each species, based on AUC val-

ues. Hereafter, we will use the respective acronym in Table 1 to refer

to each S-SDM series and BES for the one built with the best SDMs.

Each S-SDM series was composed of 20 S-SDMs built with succes-

sive threshold criteria based on a range of omission percentages

(‘predetermined sensitivities’ according to Fielding & Bell 1997). For

example, a 10% omission-percentage threshold implies that the

suitable habitat of the resulting binary map contained 90% of the

species presence records (Fielding & Bell 1997). We built the 20

S-SDMs of each S-SDM series by applying a range of thresholds,

from 0% to 95% omission error, in steps of 5%.

To compare the performance of the S-SDM predictions against

the observed data of BIOTREE-NET, we applied the rationale

underlying the assessment of species turnover (see Lennon et al.

2001 and Koleff, Gaston & Lennon 2003). Such rationale is based

on the definition of the diversity components a, b and c for two given

locations, being a the number of species shared by both locations, b

the number of exclusive species of the first location and c the number

of exclusive species of the second location (Lennon et al. 2001). We

computed a, b and c for the observed 250 BIOTREE inventory loca-

tions and the 380 predicted compositions with the betadiver function

included in the R package vegan (Oksanen et al. 2011). To analyse

the results, we slightly changed the interpretation of the diversity

components explained above. Hereafter, a represents the number of

species common to the observed and predicted composition (i.e. the

number of species correctly predicted), whereas b and c, respectively,

represent the number of exclusive species of the simulated (i.e. the

number of overpredicted species, or commission error) and observed

compositions (i.e. the number of underpredicted species or omission

error). Considering such an interpretation, we designed two simple

indexes to assess S-SDM performance in predicting richness and

composition: Rpp (richness predictive performance) and Cpp (com-

position predictive performance) respectively. The former is

presented in Eq. 1 and represents the absolute difference between the

predicted and the observed richness. The latter is presented in Eq. 2

and represents the number of incorrectly predicted species for each

correctly predicted species. Both indexes present a lower limit of zero

and an upper limit at the maximum number of modelled species,

with lower values indicating better predictive performance. The

results of both indexes can be easily expressed relatively to the

observed number of species, that may be useful to compensate differ-

ences in species richness between locations and obtain more reliable

assessments, or converted to proportions or percentages, to allow the

comparison between different studies.

Rpp ¼ jðaþ bÞ � ðaþ cÞj eqn 1

Cpp ¼ ðbþ cÞ=a eqn 2
Fig. 2. Target study area. The grey dots represents the GBIF presence

records. The Boxes represents the BIOTREENET inventory plots used

to evaluate the S-SDMs.
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To evaluate the suitability of Cpp as a measure of predictive perfor-

mance in composition for S-SDMs, we compared it with other mea-

sures of similarity in composition. We examined Koleff, Gaston &

Lennon (2003) searching for indexes with different properties and

selected two of them: (1) the Sorensen similarity index (bsor), presented
by Lennon et al. (2001), is a measure of continuity that depends on the

variation of the matching component a. To allow the comparison of

bsor with the other indexes, we transformed its values into dissimilarity

by subtracting the equation in Koleff, Gaston & Lennon (2003) by one

(see Eq. 3). According to Eq. 3, bsor has its upper limit at one (strong

dissimilarity between compositions) and the lower limit at zero (strong

similarity between compositions); (2) the symmetric form of the Simp-

son’s dissimilarity index (bsim, Eq. 4), thatwas also presented inLennon
et al. (2001), derived from the one proposed by Simpson (1943), and

reformulated by Koleff, Gaston & Lennon (2003). bsim is a measure of

turnover focused on compositional differences instead of differences in

species richness. The upper bsim value is found when the observed and

predicted compositions have no species in common, and the lower

value is zero, when both compositions are the same. Previously, bsim
have been used in the sphere of S-SDMs by Pineda & Lobo (2009) to

assess the predictive performance of richness models of amphibians in

Mexico.

bsor ¼ 1� ð2a=ð2aþ bþ cÞÞ eqn 3

bsim ¼ minðb; cÞ=ðminðb; cÞ þ aÞ eqn 4

Also, we computed the mean a, b, c, Rpp, Cpp, bsor and bsim between

the observed and predicted compositions for each S-SDM to graphi-

cally analyse the behaviour of each index along thresholds.

ANALYSIS

We approached the question ‘Which combination of SDM algorithms

(or ensemble method) and threshold criteria maximizes the perfor-

mance of S-SDMs in terms of species richness and composition?’ from

two viewpoints. Firstly, we analysed the performance of each S-SDM

series without considering threshold criteria. To do so, we applied the

Friedman nonparametric method with a post hoc test to search for sig-

nificant differences in the raw values of Rpp and Cpp between pairs of

the 19 groups of S-SDMs, each consisting of 5000 cases: 20 thresh-

olds 9 250 inventory locations (Hollander & Wolfe 1973). Then we

ranked each S-SDM series according to its performance for Rpp and

Cpp and the statistical differences between them. At this stage of the

analysis, we did not consider thresholds as a factor. Secondly, we com-

puted the mean values for Rpp and Cpp for every combination of

threshold and S-SDM series and scaled the values between 0 and 0�5 to
weight equally predictive performance in richness and composition.

We added together the scaled indexes into a single combined perfor-

mance index in the interval [0, 1] (the lesser, the better) that was plotted

using the heatmap.2 function of the gplots R library (Warnes 2012).

The resulting plot was intended to be used as a tool to select the meth-

ods and thresholds that build themost accurate S-SDMs.

Results

From the initial 1669 species used to build SDMs, only 1224

presented all of their models with an AUC higher than 0�65.
Therefore, each of the final 380 S-SDMs was built by summa-

tion of 1224 SDMs (see Fig. 3). The BES series, which was the

Table 1. Modelling algorithms and their ensembles stacked by summation to generate the S-SDMs analysed. The ‘Parameters’ column represents

the configuration of themost important parameters used to generate the SDMs. TheR version 2�14�2 was used to calibrate themodels depending on

Rpackages

Family Algorithm Acronym Software Reference Parameters

Distance-based Chebyshev CHE OpenModeller Mu~noz et al. (2009) nearest n points = 3

Euclidean EUC

Manhattan MAN

Mahalanobis MAH

Machine learning Boosted

Regression Trees

BRT RpackageDismo Hijmans et al. (2012) tree complexity = 2

max trees = 1000

MaximumEntropy MAX MaxEnt Phillips, Anderson&

Schapire (2006)

default settings

Artificial

NeuralNetworks

ANN Rpackage nnet Venables &Ripley (2002) results of 10 neural

networks ensembled

RandomForests RFR Rpackage

randomForest

Breiman (2001); Liaw&

Wiener (2002)

default settings

Support

VectorMachines

VMO OpenModeller Mu~noz et al. (2009)

VMR Rpackage kernlab Karatzoglou et al. (2004)

Regression GLM LOG Rcore RDevelopment

Core Team (2012)

5000 pseudo-absences

avoiding spatial overlap

with presences.

family = binomial

link = logit

no interactions

GAM GAM Rpackage gam Hastie (2011)

MARS MAR Rpackage earth Milborrow (2012)

Ensembles All algorithms EN1 GRASSGIS GRASSDevelopment

Team (2011)Best algorithms

(Elith et al. 2006)

EN2

Distance-based EN3

Machine learning EN4

Regression-based EN5
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only one mixing different SDM methods, was composed

mainly of EN1 (311 species), RFR (310) and NNR (279), fol-

lowed by EN5 (68), VMO (57) andGAM (49).

The trends of a, b and c along thresholds were similar in

shape between the different S-SDM series (see upper plot at

Fig. 4). The diversity component b (exclusive species of the

simulated composition; commission error) increased exponen-

tially while the threshold decreased, whereas the component

c (exclusive species of the observed composition; omission

error) increased linearly but at a much lower rate along thresh-

olds. The trend of shared species between the observed and

simulated composition was symmetric with respect to c. Rpp

was strongly influenced by the values of b for the lower thresh-

olds, but reaching its minimum values when b and c reached

the same value. Cpp and bsor were symmetric, showing a high

and significant correlation (mean R2 across S-SDM

series = 0�96; p-value < 0�005), with low similarity values when

the thresholds were very low or very high, and optimum values

that varied between S-SDM series (see lower plot at Fig. 4).

On the other hand, bsim showed a contradictory trend, indicat-

ing high similarity between the observed and simulated compo-

sition when the thresholds were very low or very high.

Considering the strong correlation between Cpp and bsor and
the consistent behaviour of Rpp, hereafter, we will report our

results referring only toRpp andCpp.

The Friedman test confirmed that there were significant

differences between S-SDM series for both indexes (p-value

< 2�2e-16). When richness and composition were predicted,

RFR (see Fig. 5a and 5b) emerged as the most accurate SDM

method to build S-SDMs, significantly differing from the other

methods (p-value < 2�2e-16). The heatmap (Fig. 6) shows the

values of the combined performance index (the scaled sum of

Cpp and Rpp) for each combination of S-SDM series and

threshold. In the combined performance index, lower values

represent higher predictive performances for species richness

and composition. This heatmap shows intuitively the best com-

binations ofmodellingmethod and threshold to build themost

accurate S-SDMs.

Discussion

The aim of this study was to assess how the choice of SDM

method and threshold selection affects the predictive perfor-

Fig. 3. A fraction of the generated S-SDMs. Columns represent methods (BES, LOG,MAN,RFR; see Table 1) whereas rows represent thresholds

(0, 30, 60, 90). The colour scale, which represents species richness, is blue until 440, which was the maximum observed richness in a BIOTREE-NET

inventory plot. The red colours representss simulated richness between 441 and 1224 species.

Fig. 4. Trends of the mean a, b, c, Rpp, Cpp, bsor, and bsim along

thresholds for the BES S-SDMseries. Both plots share the same x axis.
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mance of S-SDMs in terms of species richness and composi-

tion. Different SDM methods are known to provide results of

varying predictive performance (Elith et al. 2006), whereas the

threshold selection has a major impact on the omission and

commission errors in the model outcome (Liu et al. 2005). We

found that S-SDMs built with different SDMmethods present

different predictive accuracies, and that threshold selection

strongly influences the reliability of the predicted richness and

composition.

PERFORMANCE INDEXES

We tested several S-SDM performance measures regarding

accuracy in species richness and composition. The richness pre-

dictive-performance index (Rpp) has a mathematical formula-

tion similar to the root mean square deviation (RMSD), but

adapted to be computed from the diversity components a, b

and c. This enabled us to properly identify the SDM methods

and thresholds that provided the minimum error in predicted

richness. We applied this index instead of the Spearman’s rank

correlation coefficient applied by Pineda & Lobo (2009)

because the latter is a measure of dependence between the

observed and simulated richness patterns, but does not provide

the overall difference between the observed and predicted spe-

cies richness, which was one of the target values to minimize in

our study.

Regarding the indexes to compare predicted and observed

composition, our analysis showed that bsim provided mislead-

ing results, especially at lower thresholds, at which its values

indicated high similarity between observed and predicted com-

positions. At these thresholds the commission error was actu-

ally high – there were many more species predicted in the

simulation than present in the observed composition – and

therefore the actual similarity between predicted and observed

compositions must be very low. This behaviour can be

explained for bsim considering that its computation relies on

the term ‘min(b, c)’, which at each threshold automatically

selects the diversity component of lower value, which turns out

to be c at lower thresholds. As Koleff, Gaston & Lennon

(2003) stated, bsim is very sensitive to subtle variations in b or c

when the values of a and either b or c are low. In the light of

our findings, and considering the nature of bsim, we cannot

consider bsim as a reliable measure of composition similarity to

compare the outcomes of S-SDMs generated with different

threshold criteria, especially when such thresholds are low. On

the other hand, bsor and Cpp were highly correlated and they

were readily interchangeable.

There are other alternative possibilities to evaluate the pre-

dictive performance of S-SDMs that also considers a fourth

biodiversity component named d, which represents the species

that are both observed and predicted as absent. The four biodi-

versity components taken together can be used to fill a confu-

sion matrix and compute different accuracy measures like

specificity, sensitivity or kappa (Pottier et al. 2012).

BEST SDM METHODS TO BUILD S-SDMS

We found a consistent pattern of predictive accuracy in rich-

ness and composition when the median of Rpp and Cpp was

analysed for the S-SDM series without considering thresholds.

The rankings for both accuracy indexes were very similar, with

RFR, BES,NNR, EN5 and EN1 in the first five positions. The

RFR S-SDM series was generated with random forests, a

machine-learning method able to fit complex nonlinear sur-

faces from high-dimensional input data (Cutler et al. 2007).

The use of random forest to calibrate SDMs is increasing in

the literature, outperforming other modelling methods such

as logistic regression, maximum entropy, artificial neural

Fig. 5. Ordered boxplots showing the performance of each S-SDM series in terms of species richness (Rpp, plot a) and species composition (Cpp,

plot b). Lower values indicate better predictive performances. The y axis was clipped to the higher quartiles to provide a better visualization.
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networks or support vector machines (Cutler et al. 2007; Wil-

liams et al. 2009; Bisrat et al. 2012). Such good results indicate

that random forest is a promising algorithm to generate S-

SDMs, but taking into account that the algorithm results are

prone to overfitting, and show poor performance when trans-

ferred across time or space (Heikkinen, Marmion & Luoto

2012). The second position was occupied by the BES S-SDM,

which was built with the best SDM method or ensemble for

each species according to AUC values, EN1 (an ensemble of

all the SDM methods), RFR and NNR being the most fre-

quent SDMmethods selected. The good results of BES to pre-

dict richness and composition were expected and easily

explained: when comparing competing SDMs, AUC was

higher in models with less commission error. Therefore, the

BES S-SDM series was built with the single models with less

commission error – that is, the error of higher magnitude in S-

SDMs. However, BES also presents a significant drawback,

because it requires substantial computing effort, plus the neces-

sary know-how to run different families of models. Conse-

quently, the selection of other methods with better or similar

predictive accuracies, like RFR or NNR, would be preferred

by most modellers. The third position was occupied by three

methods without significant differences in performance for

richness and composition: NNR, EN5 and EN1. The Artificial

Neural Networks (NNR) method has been applied to build

SDMs ever since the works of Manel et al. (1999a), Manel,

Dias & Ormerod (1999b), but its appearance in the specialized

literature is scarce when compared with methods like GLM or

MaxEnt, probably becauseArtificial NeuralNetworks are per-

ceived by biologists as a black-box modelling method (but see

Benitez, Castro & Requena 1997; and Gahegan 2003). Also, it

has been reported that SDMs built with artificial neural net-

works present good transferability in space or time (Heikkinen,

Marmion & Luoto 2012). In the light of our results, NNR

should be considered a good choice to build S-SDMs. Regard-

ing EN5 (the ensemble of regression-based methods) and EN1

(the ensemble of all methods), both S-SDM series performed

very well, considering that some of the S-SDMs built with fun-

damental SDM methods performed poorly when predicting

richness and composition. This case is a clear example of the

advantages of ensemble model forecasting (Ara�ujo & New

2007).

THRESHOLDS IN S-SDMS

The selection of thresholds to transform a continuous SDM

surface into a binary presence/absence map have important

effects on SDM outcomes, and has been widely discussed in

Fig. 6. Heatmap representing the combined index of predictive performance in species richness and composition for each combination of SDM

method and threshold. In the colour scale, blue and red (lower and higher index values) respectively represents good and poor predictive perfor-

mance, whereas the transition in between (white) was situated in the overall mean of all the combinations. The cluster represents performance simi-

larities between SDM methods based on its mean values for the combined index. The upper left panel represents the statistical distribution of the

combined index.
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the SDM literature (Liu et al. 2005; Jim�enez-Valverde & Lobo

2007; Freeman & Moisen 2008). However, such literature is

oriented mainly to the selection of thresholds when the input

data are presence/absence, and therefore the threshold criteria

for presence-only based SDMs are not well-developed. A

potential approach proposed by Fielding & Bell (1997) is the

use of thresholds based on predetermined sensitivities – or pre-

defined percentages of omission error – but these kinds of crite-

ria have been criticized because of their arbitrariness (Liu et al.

2005). Considering this body of work, we followed the thres-

holding approach previously applied by Pineda & Lobo

(2009), which we found to be the most suitable to explore the

consequences of changing thresholds in the S-SDM outcomes.

Despite that we applied predefined omission errors as thresh-

old criteria to build S-SDMs, we did so only for testing pur-

poses. To build the most accurate S-SDMs oriented to

conservation, we recommend two alternative approaches: (1)

the fine tuning of the threshold for each individual species

based on ground-truth information, proposed by Pineda &

Lobo (2009); (2) the exploration of a subset of all the potential

thresholds available to build the S-SDM to find the one that

maximizes the predictive performance of the model in terms of

species richness and composition.

GUIDELINES TO BUILD S-SDMS

Our extensive predictive performance analysis, for richness

and composition, of combinations of S-SDM methods and

thresholds provided a noteworthy result (Fig. 6). The heatmap

of the combined index offered clear guidelines concerning the

best choices, in terms of S-SDM methods and thresholds, for

building more accurate S-SDMs. Particularly, we found that,

for at least half of the S-SDM series, the thresholds providing

the most accurate results were those ensuring omission per-

centages between 50 and 85. The exception was RFR, which

performed better in the range of 40–60, but offered good results

beyond that range, also. On the other hand, the thresholds

based on very low omission errors, of between 0 and 20, which

has been rarely applied in the literature of S-SDMs (but see

Algar et al. 2009 and Mateo et al. 2012) performed very

poorly for all S-SDM series, and thus cannot be recommended

for application in future studies.
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