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Researchers in ecology commonly use multivariate analyses (e.g. redundancy analysis, canonical correspondence analysis,
Mantel correlation, multivariate analysis of variance) to interpret patterns in biological data and relate these patterns to
environmental predictors. There has been, however, little recognition of the errors associated with biological data and the
influence that these may have on predictions derived from ecological hypotheses. We present a permutational method
that assesses the effects of taxonomic uncertainty on the multivariate analyses typically used in the analysis of ecological
data. The procedure is based on iterative randomizations that randomly re-assign non identified species in each site to any
of the other species found in the remaining sites. After each re-assignment of species identities, the multivariate method at
stake is run and a parameter of interest is calculated. Consequently, one can estimate a range of plausible values for the
parameter of interest under different scenarios of re-assigned species identities. We demonstrate the use of our approach
in the calculation of two parameters with an example involving tropical tree species from western Amazonia: 1) the
Mantel correlation between compositional similarity and environmental distances between pairs of sites, and; 2) the
variance explained by environmental predictors in redundancy analysis (RDA). We also investigated the effects of
increasing taxonomic uncertainty (i.e. number of unidentified species), and the taxonomic resolution at which
morphospecies are determined (genus-resolution, family-resolution, or fully undetermined species) on the uncertainty
range of these parameters. To achieve this, we performed simulations on a tree dataset from southern Mexico by
randomly selecting a portion of the species contained in the dataset and classifying them as unidentified at each level of
decreasing taxonomic resolution. An analysis of covariance showed that both taxonomic uncertainty and resolution
significantly influence the uncertainty range of the resulting parameters. Increasing taxonomic uncertainty expands our
uncertainty of the parameters estimated both in the Mantel test and RDA. The effects of increasing taxonomic resolution,
however, are not as evident. The method presented in this study improves the traditional approaches to study
compositional change in ecological communities by accounting for some of the uncertainty inherent to biological data.
We hope that this approach can be routinely used to estimate any parameter of interest obtained from compositional data
tables when faced with taxonomic uncertainty.

Researchers commonly use multivariate analyses to interpret
patterns in species data and relate these patterns to environ-
mental predictors. Typically, datasets describing species
composition are arranged as a two-dimensional matrix with
the samples forming the columns and the species forming
the rows. The cells of the matrix can represent the observed
abundance of each species, an abundance-score, or presence-
absence information. Information on species composition
per sample can be used in a variety of ways to define and
analyse the species communities. One can investigate the
variation of species composition among samples, for in-
stance, through the use of non-parametric multivariate
analysis of variance (Anderson 2001), canonical correspon-
dence analysis (CCA, Ter Braak 1986), and redundancy
analysis (RDA, Legendre and Legendre 1998). It is also
possible to first use the species by samples table to calculate
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species compositional dissimilarity between each pair of
samples and then explain the variation in these measurements
by one or several other measures of dissimilarity based on
environmental, spatial or temporal variables. Numerical
techniques allowing these types of analyses are Mantel test
(Mantel 1967), multiple regression on distance matrices
(Legendre et al. 1994), and generalized dissimilarity model-
ling (Ferrier et al. 2007). All these methodological ap-
proaches have been applied to different ecological questions,
including the mechanisms through which regional biotas are
formed (Williams 1996, Moritz et al. 2001, Graham et al.
2006, McKnight et al. 2007), the delineation of biotic
regions or biotic transitions (Williams 1996, Williams et al.
1999), or the analysis of distance decay of similarity, i.e. the
decrease in compositional similarity with increasing geo-

graphic distance between sites (Nekola and White 1999,



Condit et al. 2002, Tuomisto et al. 2003, Qian et al. 2005,
Tuomisto and Ruokolainen 2006, Davidar et al. 2007).

In any scientific enterprise, it is important to be able to
estimate the uncertainty of the obtained results. Failing to
quantify and understand the variation in model predictions
due to measurement errors and uncertainty can lead to
assumptions that are not valid and ultimately result in
erroneous practical decisions (Regan et al. 2002). One
recurrent source of uncertainty in explaining variation in
species composition or species compositional dissimilarities
is the inability to identify a specimen to a scientifically
named species. In this case, family or even genus might be
identified, but the species identity is indicated with number
or some other identifier of a so called morphospecies. The
lack of a taxonomic name for the species is not a problem if
it is possible to cross-check all the specimens included in
the study so that one, and only one, morphospecies name
consistently refers to a unique entity that can be interpreted
to represent a biological species. However, in some cases the
cross-checking of specimens is not practically possible, for
example, if the study includes inventories carried out by
several different (groups of) investigators who have depos-
ited their specimens in different museums. Even if
inventories have been carried out by the same investigators,
there can stll be situations, especially if the biota is
taxonomically poorly known, when it is practically im-
possible to successfully use the morphospecies approach.
This taxonomic uncertainty is common in studies on
species-rich and/or litde studied systems, such as soils,
tropical forests and freshwater invertebrate assemblages
(Prance 1994, Brown and Lomolino 1998, Heino and
Soininen 2007).

One way of dealing with unidentified species is to relax
the taxonomic resolution to the level of genus or family
(Terborgh and Andresen 1998, Valencia et al. 1998,
Chessman et al. 1999, Kessler and Bach 1999, Pyke et al.
2001, Negi and Gadgil 2002, Slik et al. 2003, ter Steege
et al. 2003, Murphy and Davy-Bowker 2005). Identifica-
tion to genus is generally far easier than identification to
species and can simplify considerably the intensive task of
field sampling, particularly in tropical forests (Higgins and
Ruokolainen 2004), and freshwater ecosystems (Wunsam
et al. 2002, Heino and Soininen 2007). Analyses of the
same inventory data separately at species level and genus
level have often led to rather similar conclusions of the
importance of predictor variables on compositional patterns
and/or patterns of dissimilarity among the inventory sites
(Kessler and Bach 1999, Higgins and Ruokolainen 2004,
Heino and Soininen 2007). However, similar results
obtained from at the species or genus resolution can not
fully justify the relaxation of the taxonomic identification
process as a solution for the problem of unidentified species.
This is because similar results arise only if two separate
forces — species-specific responses to abiotic and biotic
factors affecting results at species level, and the degree of
evolutionary conservatism in species-specific responses
affecting results at genus level — act simultaneously (Wiens
and Graham 2005, Losos 2008).

An alternative way of dealing with unidentified species
has consisted of trimming off doubtful identifications and
morphospecies (Oliveira-Filho and Ratter 1995, Pitman
et al. 2001, Linares-Palomino et al. 2003). This has the

advantage of ensuring taxonomic uniformity among sites
but, as part of the data are discarded, the result obtained
will not necessarily represent the relationship between
species compositional patterns and environmental or spatial
predictors. This risk has been acknowledged and therefore
species-level analyses have been avoided when the research-
ers have felt that taxonomic uncertainty is strong, even if
they had actually preferred species-level analyses (Terborgh
and Andresen 1998, Pitman et al. 2008). A solution to this
problem is to estimate the degree of uncertainty in the
results in order to determine if it could affect the
conclusions of the analyses. To our knowledge, no previous
studies have attempted to do this estimation, or set up
theoretical or practical guidelines to quantify uncertainty.
The aim of our paper is to take the first steps, both in
theory and in practice, to enable justified treatment of the
effect of taxonomic uncertainty on multivariate methods
commonly used in the analysis of ecological data. To
achieve this, we introduce a method that incorporates the
effect of taxonomic uncertainty in the estimation of any
parameter of interest obtained from multivariate techniques
(e.g. Mantel correlation coefficient or explained variance in
RDA, CCA or non-parametric multivariate analysis of
variance). The method allows an estimation of the potential
range of values for each parameter when morphospecies
identifications are inconsistent. The procedure is based on
iterated randomizations that re-assign unidentified species
in each site to any of the potential species found in the
remaining sites. If the genus or family of unidentified
species is known, re-assignment is done within that level of
taxonomic resolution.

We selected two widely used methods in the analysis of
ecological communities, Mantel tests and RDA, to illustrate
the application of this approach. We used our method to
explore the relationship between tree species composition
and soil variables in Amazonia. Specifically, we showed how
taxonomic uncertainty affected the calculation of two
parameters: 1) the Mantel correlation between composi-
tional similarity and environmental distances between pairs
of sites, and; 2) the variance explained by environmental
predictors in redundancy analysis (RDA). In addition, we
performed simulations on a species dataset from southern
Mexico to investigate how an increase in the number of
undetermined species at different taxonomic resolutions
affects the range of the estimated parameter. We choose
these two case studies to provide a range of situations where
our method can be used. Our hope is that the method
outlined in this study will become an easily available tool
for applying multivariate methods to ecological commu-
nities in cases where there is taxonomic uncertainty.

The method

The method outlined here describes a general approach to
account for taxonomic uncertainty when computing any
parameter of interest from biological data tables. This is done
by estimating credible bounds under plausible scenarios
of re-assigned species identities. We have implemented
the procedure in the accompanying package “betaper”
(freely available at <http://cran.r-project.org/web/packages/
betaper/index.html > and in the Supplementary material
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Appendix 1), that can be run under the R environment
(R Development Core Team 2009).

The input data necessary to implement the procedure
are: 1) a community data matrix including the family, genus
and species specific names; and usually 2) a matrix of
explanatory variables (usually environmental or geographi-
cal). Species in the community data matrix are codified
according to the taxonomic rank (species, genus, family,
etc.) of the most accurate identification. The procedure is
then implemented in two sequential steps.

Step 1. Morphospecies identified only to genus are
randomly re-assigned with the same probability within the
group of species and morphospecies that share the same
genus, provided they are not found in the same sites. In the
re-assignment of the species identity, the species considered
can also receive its own identity. For instance, let’s assume
we have three floristic inventories. In site A we have Eugenia
spl and E. nesiotica. In site B we have Eugenia nesiotica,
E. principium and E. salamensis. In site C we have Eugenia
sp2 and E. salamensis. Eugenia spl can be thus re-identified
with equal probability as E. sp2, E. principium, E. salamensis
or its own identity (£. spl). In the latter case, this means
that we assume that £. sp1 is a completely different species,
although we do not know its true identity. On the contrary,
we cannot re-identify E. spl as E. nesiotica because they
were found in the same site, so we are quite certain that
E. spl is different from E. nesiotica. The same is applied to
species identified only to family and fully unidentified
species. Note that when collating inventories are from
different researchers, we must rename all unidentified
species. This is because two researchers can use the same
label, e.g. E. spl, even though this name does not
necessarily refer to the same species. For a verification of
the biological identity of E. spl one would need to cross-
check the vouchers bearing the same name.

Step 2. Step 1 is iterated 7 times. As a result, 7 matrices
are obtained, all of which contain the same number of sites
but a variable number of species depending on the resulting
re-assignment of morphospecies.

Multivariate analyses such as non-parametric multi-
variate analysis of variance, Mantel test, CCA or RDA,
can then be applied to each of these matrices of species per
sites, provided that a matrix of explanatory variables is
available. Application of any of these analyses to the 7
matrices computed in the former steps will allow the
estimation of # parameters of interest, thus allowing
calculation of credible bounds for such parameters.

Implementation of the procedure in two multivariate
analyses

We selected two widely used methods in the analysis of
ecological communities, namely Mantel test and RDA, to
illustrate our approach. In the Mantel test, one parameter of
interest is the Pearson’s correlation coefficient, 7, between
the species compositional distance matrix and the geogra-
phical or environmental distance matrix. The square of
Pearson’s 7 is the percentage of variation in the community
dissimilarities explained by geographical or environmental
distances. In subsequent applications of this method, the
Serensen’s coefficient (Legendre and Legendre 1998) will
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be used to calculate species compositional distance between
sites, although other coefficients, such as Jaccard’s index,
can also be used (Magurran 1988). Rank-based measures of
association, such as Kendall’s or Spearman’s correlation, can
also be specified in the procedure. Computation of Mantel
test under different scenarios of species re-assignments was
done using function “mantel” in the R package “vegan”
(Oksanen et al. 2008).

In RDA, or any other canonical ordination method, the
aim is to explain the variance of the community composi-
tion matrix by the environmental matrix (Legendre and
Legendre 1998). This is calculated like a coefficient of
determination (R?) in multiple regression, dividing the sum
of all canonical eigenvalues by the total variation in the
biological data matrix. Another parameter of interest in
RDA is the F statistic, i.e. the ratio of constrained and
unconstrained total inertia, each divided by their respective
ranks. This F statistic is the basis for tests of significance of
canonical ordinations. Computation of RDA under differ-
ent scenarios of species re-assignments was done using
function “rda” in the R package “vegan” (Oksanen et al.
2008).

Application to a case study from western
Amazonia

Description of the dataset

The data from western Amazonia included tree inventories
at nine lowland sites (ca 100-150 m a.s.l.) near Iquitos,
Peru. The sites were selected to represent regional variations
in geology and were distributed along a soil nutrient
gradient ranging from nutrient poor loamy soils to richer
clayey soils. Each of the nine inventories consisted of four
20 x20 m plots (0.16 ha total area) distributed along
1.3-km transects. At each site, all woody, free-standing
stems of >2.5 cm dbh were identified to species or mor-
phospecies (Higgins and Ruokolainen 2004). The full
inventories included 3980 individuals from 1188 species
or morphospecies, between 284 and 477 genera (263
identified genera and from 21 to 214 unidentified genera),
and between 78 and 93 families (77 identified families and
from 1 to 16 unidentified families). As explanatory variables
in RDA we used base cation concentrations (Ca, K, Mg,
Na) and in the Mantel test, following Ruokolainen et al.
(2007), we had just one environmental distance data matrix
that presented Euclidean distances in the logarithm of the
sum of cations at each site.

A large proportion of species were not having a scien-
tific name. Out of the 1188 species and morphospecies
identified, 475 had been identified only to genus (40.0%),
112 to family (9.4%), and 15 lacked even family names
(1.3%). All specimens were in reality cross-checked and
therefore the morphospecies can be taken to represent
biological species. However, for the purposes of our study,
we decided to regard every inventory as a separate effort
without any comparison of the specimens with other
inventories. After this assumption, we can use the dataset
to illustrate how our method allows one to take taxonomic
uncertainty into account in analyses of taxonomically non-
harmonised data collected by different researchers.



Mantel test

We calculated the Mantel correlation between floristic
similarities (Sorensen index) and soil cation distances
1000 times simulating a situation in which there had not
been any cross-checking of specimens from different plots
(Fig. 1). This gave us maximum (—0.694) and minimum
(—0.538) values for the correlation, together with the
median (—0.616) and the range of 95% of values above
and below the median [—0.562, —0.662]. For a dataset in
which all the morphospecies have been trimmed off from
the analysis, the correlation was slightly above the mean of
the simulated cases (»=—0.646), but still within the 95%
range of estimated values.

Redundancy analysis (RDA)

Using the same simulations of re-assigned species identities
conducted in the previous analysis, we calculated the
proportion of the variance of the community composition
matrix that was explained by the environmental matrix in
RDA 1000 times (Fig. 2). This gave us a maximum of
0.514 and minimum of 0.475. The median was 0.493 and
the range for 95% of values above and below the median
was 0.479-0.507. After trimming off morphospecies from
the analysis, the explained variance results below the
minimum obtained through permutations (R* =0.455).

Simulating different scenarios of taxonomic
uncertainty

Setting the scenarios

To test the effect of increasing number of undetermined
taxa and changing level of taxonomic resolution on the
estimated parameters (Mantel correlation and RDA ex-
plained variance), we used a dataset including tree species
data obtained from 16 forest fragments in the Highlands
of Chiapas, southern Mexico. Over 19000 trees >10-cm
stem diameter were identified to species or morphospecies.
The morphospecies identities were cross-checked among the
inventory sites and therefore we assume that each mor-
phospecies name corresponds to one distinct biological
species. Following this assumption, we established a base-
line with which to compare different scenarios of (simu-
lated) taxonomic uncertainty. Overall, there were a total of
231 native tree species, 143 genera, and 72 families. Details
of the sampling procedure can be found in Cayuela et al.
(2006). A matrix of species abundance per fragment and
geographical coordinates of the fragments’ centroids are
provided in the Supplementary material Appendix 2 and as
example datasets in the accompanying package “betaper”.
We randomly selected 5% of the species, and classified
them as unidentified at each level of decreasing taxonomic
resolution: 1) genus-resolution; 2) family-resolution; and 3)
fully undetermined species. We repeated the procedure with
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Figure 1. Correlation between Serensen’s similarity index and soil distances among nine inventory plots in western Amazonia (bottom).
Soil distances between the 36 possible pairs of plots were calculated using the logarithm of the sum of soil cations. Locally-weighted
polynomial regression lines are presented for the 1000 correlations performed between floristic and soil distances (solid blue lines). The
red dashed red line represents the locally-weighted polynomial regression line obtained when using the fully identified part of the dataset.
Histograms are shown for estimated Mantel correlations (top left) and p-values (top right, p-value in each correlation estimated through
100 randomisations) respectively (solid red lines indicate the median).
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Figure 2. RDA ordination plot of samples (blue points) and linear
constraints of soil variables (grey arrows) in the western Amazonia
dataset for 1000 simulations of species identities re-assignments.
Dispersion ellipses have been drawn depicting 99% confidence
levels for the position of each locality. Blue crosses and red arrows
indicate the RDA values of samples and linear constraints,
respectively, for the fully identified part of the dataset.

10, 15, 20, 25, 30, 35, 40, 45 and 50% of species
respectively. In each of these ten different levels of
taxonomic uncertainty, 100 simulations were performed
following the procedure described above in steps 1-2, and
the resulting matrices with different species re-assignments
were used as input in Mantel correlation (between floristic
similarity matrices based on Serensen index and Euclidean
geographical distance matrices) and RDA (latitude and
longitude coordinates as explanatory variables). In each
case, results were compared with those resulting from
trimming off morphospecies.

We conducted an analysis of covariance to test the effects
of the level of taxonomic uncertainty, and taxonomic
resolution (morphospecies identified to genus, morpho-
species identified to family, fully undetermined species) on
the range of observed correlations. To estimate this range
we calculated the difference between the minimum and
maximum estimated parameter (Mantel correlation and
RDA explained variance) in each scenario. These values,
together with 95% confidence intervals, are shown in

Fig. 3.

Results

Odur results show that there was a significant positive effect
of the amount of taxonomic uncertainty on the range of
estimated parameters, i.e. potential 7 values in Mantel test
(Table 1) and R? in RDA (Table 2). The greater was
taxonomic uncertainty, the greater was the range of the
estimated parameter. The taxonomic resolution at which
morphospecies had been identified had a stadstically
significant effect only on the estimated range of Mantel
correlation coefficient, 7. Here, no differences were found
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between morphospecies identified to genus and to family
(see estimated coefficients in Table 1), but fully undeter-
mined morphospecies clearly increased uncertainty on r.

Discussion

The best way to remove the problem posed by taxonomic
uncertainty is to cross-check all the specimens included in
the study in order to find every individual belonging to the
same morphospecies. Cross-checking of specimens may,
however, be overly demanding in terms of human resources
and monetary costs. As a consequence, researchers must
find a trade-off between data quality and quantity. In such
situations, it is the role of statistics to ensure that the
available data are properly interpreted, so that the possible
effect of taxonomic uncertainty is taken into account. The
traditional way to handle the problem of unidentified
species is to simply leave them out of any statistical
considerations. However, the larger the proportion of
unidentified species, the greater the potential risk of
erroneous conclusions if they are based solely on identified
species. Therefore, a central question is to estimate the size
of this risk. We developed a method for estimating the
range of values of any parameter obtained from multivariate
approaches typically used to investigate the relationship
between species composition and environmental predictors
under the assumption that the distribution of unidentified
species over the sampled communities can follow any
pattern which is possible for the lowest identified taxono-
mical rank — usually genus or family — of the species.

Our results suggest that there are at least two different
characteristics that affect the strength of taxonomic un-
certainty on the value of the parameter of interest. These
are: 1) the number and frequency (and abundance if it is
quantified) of unidentified taxa in relation to identified
ones in the data table, and 2) the taxonomic resolution of
the unidentified taxa (are they identified to genus, family,
or some higher taxonomic rank).

It is quite obvious that the larger the proportion of
unidentified taxa in a species data table, the more
uncertainty there will be about the patterns in species
composition and how these patterns relate to environmental
predictors. The results of the analysis of covariance
performed on the simulations ran on the tree dataset
from southern Mexico clearly follow this logic. Yet it was
interesting to observe that, despite fairly large amounts of
the species may remain unidentified (up to at least 50%),
the estimated parameters (Mantel correlation and RDA
explained variance) can still stay within a relatively narrow
range. This suggests that at least in this particular dataset,
the species are ecologically rather redundant. In other
words, their distributions are controlled by roughly the
same factors so that it does not matter so much which
species are taken to the multivariate analysis — the resulting
pattern of floristic similarities and differences among the
communities remains about the same (Mantel test), as well
as the species distribution patterns among the sites (RDA).
When thinking about the effect of our randomization
procedure on the value(s) of the parameter(s) of interest, it
is also important to notice that our method does not only
randomize the ecological responses of the unidentified
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Figure 3. Uncertainty range of the predicted correlation, 7, between floristic and geographical distances in Mantel tests at increasing levels
of taxonomic uncertainty (from 0 to 50%) under different simulated scenarios: (a) undetermined species identified to genus resolution;
(b) undetermined species identified to family resolution; (c) fully undetermined species. The same scenarios of taxonomic uncertainty are
analysed for the predicted squared R in RDA ((d), (e), (), respectively). Crosses represent mean values, vertical lines represent 95%
confidence intervals, black dots represent minimum and maximum values, and circles represent the estimated parameter after taking out

morphospecies from the data matrix.

species, but it also adds noise to the ecological responses of
the identified species through the random reassignments of
the identifications so that a named species can be recorded
to occur in environmental conditions that are in reality
outside its limits of ecological tolerance. Therefore, 50% of
unidentified species means that much less than 50% of the
species in the dataset actually retain their originally observed
pattern of distribution in each random run.

The Amazonian data differs from the Mexican data in
the sense that unidentified species represented the taxono-
mically problematic cases and not taxa that were assigned as
unidentified by a random draw. In reality, taxonomically

unknown species may well be an ecologically non-random
selection of species — at least they apparently have smaller
ranges of distribution than identified species (Ruokolainen
et al. 2002). Therefore, the Amazonian data probably
imitate better than the Mexican data a real situation in
which our method can be used.

The robustness of the estimated parameters for the two
example datasets is well in line with previous independent
studies which have considered how subsamples of com-
munity data can reveal the pattern of similarities and
differences visible in the complete dataset (Kessler and Bach

1999, Vellend et al. 2008). This suggests that biological

Table 1. Analysis of covariance testing the effects of taxonomic uncertainty (covariable), and taxonomic resolution on the range of potential
values of the estimated Mantel correlation between floristic and geographical distances. Significant values at p <0.01 are highlighted in bold.

Analysis of covariance table DF Sum Sq mean F value Pr (>F)
Taxonomic uncertainty 1 0.013 0.013 79.860 <0.001
Taxonomic resolution 2 0.007 0.004 22.099 <0.001
Residuals 29 0.005 0.000
Estimated coefficients Estimate SE t value Pr (>]t])
Intercept* 0.002 0.005 0.330 0.743
Taxonomic uncertainty 0.001 0.000 8.936 <0.001
Taxonomic resolution: to genus —0.007 0.006 —1.241 0.225
fully unidentified 0.028 0.005 5.036 <0.001

*The intercept incorporates the effects of one level of the factor taxonomic resolution (to family).
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Table 2. Analysis of covariance testing the effects of taxonomic uncertainty (covariable), and taxonomic resolution on the range of potential
values of the estimated variability of floristic composition explained by geographical coordinates in RDA. Significant values at p < 0.01 are

highlighted in bold.

Analysis of covariance table DF Sum Sq mean F value Pr (>F)
Taxonomic uncertainty 1 0.012 0.012 249.99 <0.001
Taxonomic resolution 2 0.000 0.000 2.081 0.143
Residuals 29
Estimated coefficients Estimate SE t value Pr (>1t))
Intercept* 0.002 0.003 0.565 0.577
Taxonomic uncertainty 0.001 0.000 15.811 <0.001
Taxonomic resolution: to genus —0.003 0.003 —1.116 0.274
fully unidentified —0.006 0.003 —2.037 0.051

*The intercept incorporates the effects of one level of the factor taxonomic resolution (to family).

communities in general may be characterized by a fairly
large amount of ecological redundancy in species’ responses
to environmental characteristics. It appears conceivable that
a redundant community will have a narrow range of values
for the estimated parameters obtained through the rando-
mization process. Also, in a redundant system the parameter
of interest obtained after trimming off the unidentified
species should have a value close to, but more extreme than,
the most extreme limit of the range of values produced via
randomizations. This is expected because the randomization
process is unlikely to improve the statistical relationship
between environment and species in a redundant system,
but a decrease should occur easily. If the relationship is
rather weak and/or individual species behave ecologically
quite differently, it would be easier to obtain higher
parameter values through the randomization process. Our
results, however, cannot provide a rigorous test of this idea
and further research with simulated datasets of different
degrees of ecological redundancy would therefore be needed
to properly address these issues.

The taxonomic resolution at which morphospecies were
determined also affected the outcome of the distance matrix
correlation in Mantel tests in our simulations with the
Mexican data (but not in the outcome of RDA). Mor-
phospecies identified to genus or to family had a smaller
influence on the range of estimated correlation values than
morphospecies without any identified level of taxonomic
hierarchy. This is probably due to the fact that a specimen
with genus identification can change the distribution
pattern of only relatively small number of congeneric
identified species. On the other hand, a specimen without
genus or family identification can change the distribution
pattern of any other identified species in the data table.
Therefore, morphospecies with only a relatively high
identified taxonomic rank can potentially have a stronger
effect on the range of the correlation.

All the examples used in this article concern plants, a
consequence of our field of expertise. Nevertheless, the
proposed methodology can be applied to any taxon and
ecosystem. For freshwater ecosystems, for example, taxo-
nomic uncertainty is particularly problematic given their
high levels of biodiversity compared to their areal extent
and the absence of species-level information for many
taxonomic groups (Heino and Soininen 2007). Taxonomic
uncertainty is also widespread in microbial communities
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(Mitchell and Meisterfeld 2005, Fraser et al. 2009, Heger
et al. 2009). Many bacteria types are identified by genetic
polymorphism and, therefore, no one can really know
exactly what the locus banding pattern means and what
bacteria species they are dealing with (O. Steinitz pers.
comm.).

Finally, our approach can be easily transferred to other
multivariate methods, such as non-parametric multivariate
analysis of variance (Anderson 2001), CCA (Ter Braak
1986), analysis of similarities (Clarke 1993) or generalized
dissimilarity modelling (Ferrier et al. 2007). Some of these
methods have been already implemented in the accompa-
nying package “betaper”. In addition, we must also
acknowledge the fact that data are samples and not
populations. Therefore, we can presume that the real ranges
for the estimated parameters are possibly wider than the
ones obtained because of the effect of sampling a popula-
tion. In fact, one way to see the problem of taxonomical
uncertainty is to think what would be the maximum
possible effect that the reallocation of species identities of
unidentified taxa can have on the value of any parameter of
interest, if the parameter value is first calculated on the basis
of identified species only. Our method looks for this effect
through a random process of reallocating the species
identities. However, a random process would probably
not find the absolute maximum effect. To find this
maximum effect one would first need to define a specific
kind of relation between the predictor and response variable
and thereafter use this relation as a constraint so that
the reallocated species identities would minimally fit to the
relation. We leave this approach for eventual further work
on the subject. Finally, other kinds of uncertainty could be
also considered, such as that derived from periodic revisions
of species phylogeny (Isaac et al. 2004). Nonetheless,
incorporating this source of uncertainty to multivariate
methods still remains a challenge.
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