
Using climatically based random forests to downscale
coarse-grained potential natural vegetation maps in
tropical Mexico
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Abstract

Questions: Can the accuracy of coarse resolution potential vegetation maps be

improved through downscaling to finer resolution climatic grids? Can output

from random forests produce new insight into the climatic characteristics that

are associated with the structural characteristics of the vegetation?

Location: Southern Mexico.

Methods: A potential vegetation map (National Atlas of Mexico) at a

1:4 000 000 scale, was downscaled to a 1 km2 grid resolution using climatically

based random forests models. The resulting map was then evaluated against

256 inventory plots sampled at the transition between different vegetation

types in Southern Mexico.

Results: Downscaling increased accuracy up to 0.40, as measured by the Kappa

Index of Agreement. Multivariate analysis of the results allowed the association

between Rzedowski’s classification and climatic variation to be explored. This

confirmed that many of the structural aspects of the vegetation that are used by

the Rzedowski classification are closely associated with climate, but it also

revealed weaknesses in the underlying basis of this classification system.

Conclusions: Rzedowski’s scheme for vegetation classification may require

further modification in order to be an effective tool for research into vegeta-

tion–climate relationships.

Introduction

The potential natural vegetation is the theoretical climax

vegetation community that would occupy an area if left

undisturbed by humans (Moravec 1998; Zerbe 1998).

Potential vegetation maps are widely used in research,

conservation and management. Some applications of

potential vegetation maps include analysing vegetation

dynamics (Hessburg et al. 1999; Hickler et al. 2004),

quantifying spatial patterns of deforestation (Trejo &

Dirzo 2000), planning land management (Hughes et al.

1986; Felix et al. 2004), selecting sites and species for

restoration (Miyawaki 2004), analysing the effect of

climate change on vegetation (Yates et al. 2000; Koca

et al. 2006; Franke & Köstner 2007), and predicting spatial

patterns of species diversity (Golicher et al. 2008).

A typical method for constructing a potential vegeta-

tion map involves identifying remnants of vegetation

with natural or near-natural character (Zerbe 1998).

Natural vegetation includes vegetation that is assumed to

approximate to the theoretical climax community. Near-

natural vegetation has been influenced by levels of hu-

man disturbance of similar frequency and intensity to

natural disturbance. It is therefore thought to have a
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similar species composition to the theoretical climax

community (White 1979). The vegetation found in rem-

nants of natural or near-natural vegetation may be

assumed to potentially extend to a wider geographical

area with similar environmental conditions (Cross 1998;

Moravec 1998; Zerbe 1998). Potential vegetation maps

are therefore typically coarse scale in nature because

the delineation of areas with similar environmental

conditions has typically involved making simplifying

assumptions that ignore some of the environmental

heterogeneity (Lüttge 2008). Potential vegetation maps

produced using traditional photo-interpretative and car-

tographic methods may be designed primarily for com-

munication purposes rather than as analytical tools

(DeMers 1991; Franklin 1995), although the process of

classification may produce insight into the climatic char-

acteristics associated with the potential vegetation (De-

Mers 1991; Franklin 1995).

At present, one widely recognized source of informa-

tion on the potential distribution of vegetation types of

Southern Mexico is the system proposed by Rzedowski

(1978) (Olson et al. 2001; González-Medrano 2003). This

has been spatially represented at a scale 1:4 000 000

(Rzedowski 1990), and digitized by the Comisión Nacio-

nal para el Conocimiento y el Uso de la Biodiversidad

(CONABIO). Rzedowski’s terminology forms a funda-

mental framework for describing the regional vegetation

that is widely used and understood within Mexico (Chal-

lenger & Soberón 2008). This map, however, cannot be

fully relied on for various reasons described by the

original author (Rzedowski 1978): (1) it is a coarse

representation of the potential vegetation distribution;

(2) this coarse resolution has prevented the representa-

tion of dispersed fragments of the potential vegetation;

and (3) the definition of boundaries is inaccurate in some

areas, owing to the scarcity of information on natural and

near-natural vegetation that was available to the author.

There is a general concern that the resolution of tradi-

tional maps of potential vegetation such as that based on

Rzedowski’s classification are too coarse for real-world

applications (Stoms 1992; Bredenkamp et al. 1998; Hop-

kinson et al. 2000; Kunin et al. 2000; Hulme 2003; Rouget

2003; Hartley et al. 2004). Map inaccuracies can result

from the scarcity of information on natural and near-

natural vegetation (Zerbe 1998), and from the coarse

resolution in the available maps of predictor variables

(van Etten 1998). Coarse-scale maps may overlook varia-

bility in mountainous and other areas in which fine-

scaled climatic gradients determine the observed vegeta-

tion type (Franklin 1995). In order to use vegetation maps

effectively, their spatial resolution must be adjusted to the

needs of pure and applied biological and ecological re-

search (Araújo et al. 2005; McPherson et al. 2006). For

many applications, data at a spatial resolution of, at least,

1 km� 1 km are necessary to capture environmental

variability that is lost at coarse resolutions (Hijmans et al.

2005). These data could be useful for regional/national

purposes (Rogan & Chen 2004).

To date, fine grained spatial representations of potential

vegetation types have not been available for most of

Mexico. Examples of studies using Rzedowski’s potential

vegetation map include a description of changes in season-

ally dry tropical forests in Mexico (Trejo & Dirzo 2000),

analyses of the vulnerability of Mexican vegetation types

to climate change (Villers-Ruiz & Trejo-Vázquez 1997,

2003; Benı́tez-Badillo et al. 2003), the identification of

areas for conservation in tropical deciduous forests (Cué-

Bär et al. 2006), and studies modeling ecological niches of

Mexican bird species to reconstruct population losses

(Peterson et al. 2006). Although there has been progress

in downscaling naturally coarse-grained variables, such as

temperature or precipitation (Golicher et al. 2006; Kosto-

poulou et al. 2006; Vrac et al. 2007), the potential of

contemporary statistical methods to downscale vegetation

maps has been, to date, insufficiently examined.

Statistical downscaling is expected to be an effective

method for improving both the spatial resolution and

accuracy of potential vegetation maps even in a challen-

ging area such as Southern Mexico. Such approaches

could then increase the utility of potential vegetation

maps. For example, Villers-Ruiz & Trejo-Vázquez (1997)

established a climate–vegetation correspondence be-

tween the Köppen climate classification, as modified by

Garcı́a (1988), and the potential vegetation map for Mexico

by Rzedowski using a geographic information system.

Benı́tez-Badillo et al. (2003) used regression tree classifica-

tion analysis and the Rzedowski’s potential vegetation map,

to establish a correspondence between climatic and topo-

graphic variables, with the distribution of the vegetation

types for the state of Veracruz. Both approaches were

developed in order to identify the climatic conditions that

support each type of vegetation and to use this information

as a baseline for the projection of alternative scenarios

based on different climate change models.

In this study we aimed to downscale a 1:4 000 000 map

based on Rzedowski’s classification to a 1 km2 grid resolu-

tion using random forests algorithm. The output was

aimed to provide the necessary baseline information in

the context of a larger research study (Newton 2008) as a

first step to investigate patterns of tropical dry forest loss

and fragmentation. If downscaling yields more accurate

predictions and greater insight into the relationship be-

tween climate and vegetation, then it could be more

generally extended and used to support land cover

change studies as well as others applications related to

landscape and conservation planning in Mexico.
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More generally, our study aimed to evaluate the link-

age between Rzedowski’s structurally based vegetation

classification and climate. The challenges that arise when

downscaling may provide insight into the relationship

between vegetation structure and climatic drivers.

Methods

Study area

The study area included the states of Veracruz, Oaxaca,

Chiapas, Tabasco, Campeche, Quintana Roo and Yucatán.

This area extends over ca. 400 000 km2, including very

diverse climatic and physiographic conditions.

The vegetation types that occur in Mexico are extre-

mely varied as a result of its diverse climate and topogra-

phy (Challenger 1998a). Mexico has one of the most

diverse topographies of the world: 67% of its continental

area is over 500 m above sea level (m a.s.l) and 50% is

over more than 1000 m a.s.l. (Challenger 1998a). The

physiography of the study area includes mountainous

systems, coastal plains and hills, plateaus, valleys and

high plains. The main climatic types are: tropical humid

with different variations (with rain all the year through

and with a short dry season), tropical sub humid, tempe-

rate humid with different variations (with rain all the year

through and with winter dry season) and semiarid climate

(Challenger 1998a). The most representative soils in the

study area are: regosol, litosol, rendzinas, luvisol, cambi-

sol and gleysol (SEMARNAT 1998).

Rzedowski (1990) defines 10 major vegetation types for

Mexico, of which the following nine are represented in

the study area: pine–oak forest, montane cloud forest,

tropical evergreen forest, tropical subdeciduous forest,

tropical deciduous forest, xerophytic shrubland, thorn

forest, pastureland and aquatic vegetation. Of these,

aquatic vegetation, pastureland and a group of commu-

nities of reduced extent in Mexico (e.g. palm forest) are

considered ‘azonal’ by Rzedowski (1978), which means

that they are not climatically driven. Aquatic vegetation is

the result of naturally flooded soils (Rzedowski 1978).

Pastureland is usually the consequence of human activ-

ities such as fire and cattle grazing (Miranda 1952;

Sarukhán 1968; Puig 1972). Potentially, dry tropical forest

is one of the most extensive vegetation types of Mexico

(Challenger 1998b), covering over 60% of the total area

of tropical vegetation (Trejo & Dirzo 2000).

Data

To obtain categorical values for the dependent variable

(classes of potential vegetation), we used Rzedowski’s

1:4 000 000 potential vegetation map. We systematically

extracted points at 1-km spacing. We did not obtain

samples from aquatic vegetation and pastureland because

these vegetation types are ‘azonal’, and therefore it is

more difficult to delineate their boundaries using solely

climatically based models. Overall, we obtained 499 115

sampling points from the seven non-azonal vegetation

types (i.e. excluding aquatic vegetation and pastureland).

At each point, we extracted values from 55 climatic

variables obtained from the WorldClim site (http://

www.worldclim.org/current). The climatic layers of this

dataset were generated through interpolation of average

monthly climate data from weather stations on a 30 arc-

second resolution grid (equivalent to about 0.86 km2;

often referred to as ‘1 km’ resolution). The dataset consists

of 36 grids of monthly mean variables (calculated over the

1950–2000 period): minimum temperature (12 vari-

ables), maximum temperature (12 variables) and precipi-

tation (12 variables); and a set of 19 bioclimatic variables.

Bioclimatic variables are derived from the monthly tem-

perature and rainfall values in order to generate more

biologically meaningful variables. These variables repre-

sent annual trends, seasonality, and extreme or limiting

environmental factors. These are: (1) annual mean tem-

perature; (2) mean diurnal range; (3) isothermality; (4)

temperature seasonality; (5) maximum temperature of

warmest month; (6) minimum temperature of coldest

month; (7) temperature annual range; (8) mean tempera-

ture of wettest quarter; (9) mean temperature of driest

quarter; (10) mean temperature of warmest quarter; (11)

mean temperature of coldest quarter; (12) annual pre-

cipitation; (13) precipitation of wettest month; (14) pre-

cipitation of driest month; (15) precipitation seasonality;

(16) precipitation of wettest quarter; (17) precipitation of

driest quarter; (18) precipitation of warmest quarter; and

(19) precipitation of coldest quarter. A detailed descrip-

tion of the climatic dataset can be found in Hijmans et al.

(2005).

Although most of the bioclimatic variables associated

with temperature rely on its mean annual and seasonal

values, these variables may not always or even frequently

have a biological meaningful (Box 1995). In contrast,

different aspects of the scattering of temperature values,

may be more relevant to explain vegetation patterns.

Rzedowski (1978), for example, highlighted the impor-

tance of diurnal temperature oscillations in explaining the

distribution of vegetation types in Mexico. Box (1995) in

turn, suggested that maximum and minimum tempera-

tures, among others, may be the most important climate-

related limiting factors and mechanisms for terrestrial

vegetation types. In order to incorporate additional vari-

ables involving the variability and tendencies of tempera-

ture values, we finally derived two more variables from

the existing dataset which are temperature ranges that

underscore the fluctuation in these values, and may be

relevant to explain vegetation patterns: (1) annual

Using climatically based random forests Vaca, R. A. et al.

390
Applied Vegetation Science

Doi: 10.1111/j.1654-109X.2011.01132.x r 2011 International Association for Vegetation Science

http://www.ipni.org
http://www.ipni.org


difference in maximum temperature (calculated as: high-

est maximum temperature� lowest maximum tempera-

ture); and (2) maximum daily temperature difference

(the maximum value obtained from: monthly maximum

temperature�monthly minimum temperature).

Data analysis

Random forest

We used climatically based random forests models to find

the explanatory variables that contribute the most to

explain patterns of potential vegetation types as defined

in Rzedowski’s map (1990). Random forest is a non-

parametric method used to predict membership of cases

or objects in the classes of a categorical dependent vari-

able from their measurements on predictor variables. The

algorithm produces multiple independent trees (an en-

semble of trees) using a bootstrap sample of the data set,

each of which produces a vote (an instance statistic)

(Breiman 1996). In the end, the set of votes is used to

generate a simple majority vote for prediction, or scores

that provide basic probability estimates, which may then

be used in weighted voting (Fawcett 2006).

The following attributes of original data required con-

sideration for model building: (1) data were unbalanced;

(2) data were noisy (particularly at boundaries of vegeta-

tion types); and (3) data had some degree of class over-

lapping at their boundaries. The following steps were

followed in order to deal with such data. First, a finer-

grained potential vegetation map was predicted based on

majority vote prediction rules. We used all 57 explanatory

variables to fit the random forests model and predict

membership of potential vegetation types. The analysis

was performed with 1000 trees. Random forest’s strength

lies in its predictive ability, therefore unbalanced data

poses less of a problem than it would if the model were

used in an explanatory capacity. We therefore did not

require a balanced sample size from each class (Rogan

et al. 2008). The bootstrap training sample on which each

tree is grown randomly selects approximately 63.2% of

the cases (1/e of instances are not considered in tree

construction). We controlled the size of the individual

trees by defining the minimum size node to split (Batista

et al. 2004). The minimum size of the nodes was set to 1%

of the total data thus avoiding the most specialized and

less significant branches.

In the presence of unbalanced data and class overlaps,

decision trees may need to create many nodes to distin-

guish the minority class cases from majority class cases.

Pruning the decision trees can be useful to deal with this

by removing over-specialized branches. However pruning

does not always prevent overfitting (Batista et al. 2004).

In such cases, the probability estimates provided by ran-

dom forests models can be used a posteriori, as threshold

for predictions. The main motivation behind such ap-

proaches is to remove noisy examples lying on the wrong

side of the decision border. The removal of noisy examples

might help to find better-defined class clusters, allowing

the creation of simpler models with better generalization

capabilities (Batista et al. 2004). In order to improve the

model first developed based on majority vote prediction

rules, we followed some final steps. We validated the

model from forest inventory plots (see accuracy assess-

ment section) and used validation results to obtain in-

sights into the overall performance of the model and the

performance acquired for the different vegetation classes,

especially for those unbalanced minority classes in the

original data. We used the probability estimates provided

by random forests to find the thresholds that best define the

distribution area of classes whose accuracy remained low

(see the next section ‘ROC curves and decision thresholds

for random forest’). We finally used these thresholds to

weight votes at the corresponding pixels in the original

model and produce a new potential vegetation map.

Random forests models are expected to have a degree

of predictive accuracy that cannot be obtained using

single-tree models (Breiman 2001; Prasad et al. 2006;

Siroky 2009). The disadvantage is that the model cannot

be visualized as a single tree (Breiman 2001; Siroky

2009). Nevertheless, one useful property of random forest

is that it provides a proximity matrix (a similarity measure

between objects) (Liaw & Wiener 2002). The proximity

matrix can be used as input for non-metric multidimen-

sional scaling (NMDS), allowing the description of clus-

ters (Liaw & Wiener 2002; Shi & Horvath 2006). Thus, we

finally used NMDS in order to visualize the classification

and describe the climatic characteristics associated with

the potential vegetation (see the Non-metric multidimen-

sional scaling section later).

Receiver operating characteristics (ROC) curves and decision

thresholds for random forests

We used ROC curves to select the decision thresholds

(cut-off thresholds based on probability estimates) that

encompass the distribution limits for classes with low

agreement and maximize overall prediction accuracy

(Fawcett 2006). We defined the decision threshold as the

value in the ROC curve that minimizes false positives

while maximizing true positives, that is, the same as

maximizing the total accuracy (Zweig & Campbell 1993;

Chin et al. 2009). We extracted this cut-off value for the

classes of interest, by finding the value that maximizes:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP

TP þ FP
þ TP

TP þ FN

r
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TP, ‘true positive rate’; FP, ‘false positive rate’; FN, ‘false

negative rate’ (Chin et al. 2009).

Once the potential vegetation map was generated using

threshold values, the distribution of aquatic vegetation

was defined based on a soil map developed for Mexico at a

scale 1:1 000 000 by governmental agencies (INIFAP &

CONABIO 1995). We did not include pastureland in the

final map because this vegetation type is originated by

human activities throughout Mexico.

Non-metric multidimensional scaling

We used NMDS in order to visualize the classification

through projecting the results onto a lower dimensional

space. Non-metric multidimensional scaling is a dimension

reduction technique based on proximities between objects

(samples), where proximities express their similarity or

dissimilarity on a multidimensional space represented by a

set of variables (Breiman 2003; Härdle & Simar 2007).

We then plotted specific climatic variables onto the

NMDS ordination by fitting thin plate splines using gen-

eral additive models. This allowed us to produce a climatic

description of major vegetation types by looking at where

the vegetation classes fall. The variables plotted onto the

NMDS ordination were defined by means of the permuta-

tion accuracy importance measure. This is the average per

cent change in predictive accuracy when a variable is

included and then excluded from the model (Strobl et al.

2008).

Accuracy assessment

To test the accuracy of the different vegetation maps, field

data was obtained from different projects. From these

datasets, we selected plots that were located in areas of

low anthropogenic disturbance (remnants of mature ve-

getation and protected areas), and near the transitions

between different vegetation types. We selected sites near

the transitional areas, because most of the problems of

misclassification in coarse-grained potential vegetation

maps are restricted to the boundaries between vegetation

types, thus allowing the compilation of data in the areas

with the highest rates of misclassification. However, we

purposefully avoided plots at ecotones in order to compile

data in areas of high vegetation homogeneity, and sepa-

rated less than 2 km, thus ameliorating scale differences

between maps and ground data. Furthermore, maps

represent homogeneous areas (vegetation classes) and do

not contain ecotones. These selection criteria unavoidably

produce a large inequality in the number of plots per

vegetation type.

We obtained measures of the floristic composition in

256 floristic circular plots of 1000 m2 each. Rzedowski

(1978) provided an extensive description of the dominant

floristic composition of each vegetation type. This allowed

us to assign each sampled plot to one of Rzedowski’s

vegetation types based on species composition. The plots

were located at the following sites: 46 plots in the transi-

tion between pine–oak forest and tropical deciduous

forest in the Highlands of Chiapas, 76 plots in the transi-

tion between pine–oak forest and tropical deciduous

forest in the Sierra Madre of Chiapas, 86 plots in the

transition between pine–oak forest and montane cloud

forest in the Sierra Madre of Chiapas, seven plots in the

transition between tropical evergreen forest and tropical

deciduous forest in the Central Valley, six plots in the

transition between tropical evergreen forest and montane

cloud forest in the Lacandona Forest region, and 35 plots

in the transition between tropical evergreen forest and

montane cloud forest in the Sierra Madre of Chiapas. This

allowed us to test the accuracy of our downscaled map

compared with Rzedowski’s original vegetation map in

four out of five of the major vegetation types found in

Chiapas. Figure 1 shows the location of the sampled plots

in the state of Chiapas.

Confusion matrices and the Kappa Index of Agreement

with 95% confidence intervals were used to estimate

consistency of classifications accuracy (Rosenfield & Fitz-

patrick-Lins 1986). Results were compared with those

obtained from Rzedowski’s potential vegetation map.

Software used

Random forests analysis was performed with the random-

Forest R package (version 4.5-3. Liaw & Wiener 2002;

FORTRAN original by Breiman 2001). The ROC analysis was

performed with the ROCR R package (version 1.0-4, Sing

T., Sander O., Beerenwinkel N. & Lengauer T. 2009).

Spatial data was handled with GRASS (Geographic Resources

Analysis and Support System, version 6.3.0. GRASS Devel-

opment Team, 2008; ITC-irst. Trento, Italy), POSTGIS (version

1.3.3; Refractions Research Inc., Victoria, BC, CA), and

Quantum GIS (Quantum GIS Geographic Information

System, version 1.0.1-Kore, 2009; Quantum GIS Develop-

ment Team, Open Source Geospatial Foundation Project,

http://qgis.org/).

Results

Model validation

The Kappa Index of Agreement showed an increase in

accuracy from 0.40 for the Rzedowski map (95% con-

fidence intervals between 32.5 and 48.7%) to 0.56 for the

climatically derived map with majority vote prediction

rules (95% confidence intervals between 48.6 and

64.2%). Overall agreement increased from 55.5% to

68.0% (Table 1). Agreement was improved for all classes
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when using random forests with majority vote predic-

tions. Improvement for the montane cloud forest class,

however, remained low and there was a high commission

rate to other forest types, particularly pine–oak forest. To

improve accuracy of this class we used ROC curves. A

threshold of 0.18 maximized overall accuracy while in-

creasing class accuracy. We used this result to weight

votes in the original model, and produce a new potential

Fig. 1. Location of verification plots within the state of Chiapas (white points). Rzedowski’s potential vegetation map (color map) and the physiographic

regions of Chiapas mentioned in the text (delineated by dotted black lines) are also shown.

Table 1. Confusion matrices for: (a) Rzedowski’s map, (b) climatically derived map with majority vote prediction rules and (c) climatically derived map

with probability predictions combined. Rzedowski (1978).

Verification points

Df Ef Po M Sum % Commission % Omission Estimated Kappa

(a) Rzedowski

Deciduous forest (Df) 35 7 10 0 52 32.7 36.3 0.58

Evergreen forest (Ef) 0 22 0 0 22 0 53.2 1

Pine-oak forest (Po) 16 0 59 1 76 22.3 53.5 0.55

Montane cloud forest (M) 4 18 58 26 106 75.5 3.7 0.15

Sum 55 47 127 27 256

(b) Random forests (prediction rule: majority vote)

Deciduous forest (Df) 49 0 3 0 52 5.8 27.9 0.92

Evergreen forest (Ef) 0 22 0 0 22 0 35.3 1

Pine–oak forest (Po) 19 0 57 0 76 25.0 47.2 0.57

Montane cloud forest (M) 0 12 48 46 106 56.6 0 0.31

Sum 68 34 108 46 256

(c) Random forests (probability threshold for M)

Deciduous forest (Df) 49 0 3 0 52 5.8 27.9 0.92

Evergreen forest (Ef) 0 22 0 0 22 0 18.5 1

Pine–oak forest (Po) 19 0 49 8 76 35.5 7.5 0.55

Montane cloud forest (M) 0 5 1 100 106 5.6 7.4 0.90

Sum 68 27 53 108 256
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vegetation map with the distribution of montane cloud

forest redraw. The Kappa Index of Agreement for the

climatically derived map with probability predictions

combined increased to 0.80 (95% confidence intervals

between 73.9 and 86.0%). Overall agreement increased

from 55.5% to 85.9% (Table 1). The downscaled map

showed montane cloud forest occurrence in some impor-

tant areas that were not included in the original map.

Examples include the Northern Mountains of Chiapas

(Challenger 1998c).

Climatic description of major vegetation types

Figure 2 shows the seven most important variables for

each vegetation class and for the overall model. The most

important variables for the overall model were also

shown to be the most important predictors of individual

vegetation types. In particular, we considered the follow-

ing variables for interpolation onto the unconstrained

NMDS ordination diagram (Fig. 3): precipitation during

Nov, annual difference in maximum temperature, and

precipitation during dry months (Apr, May).

The major vegetation gradients are revealed when

using the first two ordination axes of the ordination.

These gradients are: (1) tropical evergreen forest – mon-

tane cloud forest – pine-oak forest; (2) tropical evergreen

forest – tropical subdeciduous forest – tropical deciduous

forest; (3) tropical deciduous forest – pine–oak forest.

Precipitation during Nov, as a surrogate of the extent of

the rainy period, clearly differentiated between humid

and dry vegetation types (Fig. 3a). Tropical deciduous

forest is the driest vegetation type, with the rainy period

finishing by Nov (precipitation regime from 0 to 20 mm).

Intermediate precipitation (40–80 mm) is associated with

tropical subdeciduous forest, thorn forest, xerophytic

shrubland and pine-oak forest. Higher precipitation oc-

curs in tropical evergreen forests (80–100 mm) and mon-

tane cloud forest (4 100 mm), indicating that the rainy

period extends over Nov for these vegetation types.

Annual difference in maximum temperature (Fig. 2)

resulted in one of the most important variables for overall

model. This variable is interpreted as a surrogate of the

frequency and persistence of extreme temperature

events, and was useful in explaining the climate-related

Fig. 2. Variable importance plots for vegetation classes: Tropical deciduous forest (Df); tropical sub-deciduous forest (Sf); tropical evergreen forest (Ef);

thorn forest (Tf); xerophytic shrubland (Xs); montane cloud forest (M); and pine–oak forest (Po). X axis: importance index (mean decrease accuracy).

Predictor variables: numbers are months of the year (e.g. 1 for Jan, 12 for Dec). Precipitation = prec; maximum temperature = tmax; minimum

temperature = tmin; M = month; and Q = quarter (group of 3 months). Thus, for example: precipitation for Nov = prec 11; maximum temperature of

Jul = tmax 7; minimum temperature of Apr = tmin 4; precipitation of driest month = prec driestM; precipitation of wettest quarter = prec wettestQ. Annual

precipitation = annual prec; annual difference in maximum temperature = annualMaxTDif; maximum daily temperature difference = dailyTDif; and

temperature seasonality = tempSeasonality.
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limiting factors for tropical vegetation types that follow

elevational gradients, particularly for one of the existing

vegetation gradients: tropical evergreen forest – montane

cloud forest – pine–oak forest. Temperature extremes may

affect vegetation through limitation of water uptake or by

causing excessive water loss (Box 1995), and have con-

sequences for productivity and ecological interactions

(Strandman et al. 1993). This variable clearly discrimi-

nated (Fig. 3b) between more temperate vegetation types

(pine–oak forest and montane cloud forest) distributed in

mountainous areas, with lower oscillations in maximum

temperatures (under 5 degrees), and tropical vegetation

types (tropical evergreen forest and tropical deciduous

forest), predominantly distributed in plain areas, with

higher oscillations in maximum temperature (5.5–7

degrees).

Finally, precipitation rate during Apr and May can be

important predictors to discriminate between some forest

types, such as pine–oak and tropical deciduous forest (Fig.

3c,d). This is related to the length of the dry season, which

extends over Apr (o20 mm) for deciduous forest, until

May (up to 80 mm); while in pine-oak forests it often

comes to an end in Apr.

Extent of major potential vegetation types

Figure 4 shows the distribution of potential vegetation

types, as described by Rzedowski’s map and the resulting

climatically derived map. Table 2 shows the total extent of

Southern Mexican vegetation types, as estimated by both

maps. The area of tropical deciduous forest, tropical ever-

green forest, montane cloud forest and aquatic vegetation

Fig. 3. Multidimensional scaling plot for Rzedowski’s vegetation types in Southern Mexico. Fitted contours represent the main predictors of vegetation

distribution, as mentioned in the title of each of the figures.
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increased in the downscaled map. The area of tropical

subdeciduous forest, pine–oak forest, thorn forest and

xerophytic shrubland was reduced as a result of down-

scaling. Montane cloud forest, aquatic vegetation, thorn

forest, and xerophytic shrubland registered the highest

per cent change. Montane cloud forest and tropical

deciduous forest showed an increase in their predicted

distribution areas, mainly at the expense of a reduction in

the distribution area of pine–oak forest (see Table 1).

Aquatic vegetation was increased mainly because of its

predicted distribution with soil data in the Pacific coast of

Chiapas. This area is characterized by the occurrence of

mangroves (Breedlove 1973), a vegetation type that is

classified as aquatic vegetation by Rzedowski (1978).

Nevertheless, this vegetation type was not delineated for

the coast of Chiapas by the author. Thorn forest showed a

reduction in its total extent. Although it was possible to

climatically predict its occurrence at the coast areas of

Fig. 4. Distribution of Southern Mexican vegetation types as described by (1) Rzedowski’s potential vegetation map, and (2) random forests combining

majority vote prediction and probability prediction rules. No post-processing was performed on this map.
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Mexico, this was not feasible for the interior areas of the

Yucatan Peninsula (see Fig. 4) where its occurrence is

associated with flooded soils (Rzedowski 1978).

Discussion

The study showed that contemporary computational tools

can be effectively employed to refine existing maps. Other

authors have found decision tree algorithms satisfactory

to establish relationships between vegetation units and

variables for predictive vegetation mapping (Michaelsen

et al. 1994; van Etten 1998; Muñoz & Felicı́simo 2004).

At the same time, the results demonstrate errors in the

original map. Rzedowski’s (1978) map underestimated

the extent of potential montane cloud forest with a high

commission rate to pine–oak forest. The author, pointed

out that: (1) montane cloud forest and pine–oak forest

often extent and overlap along the same elevational

levels, with montane cloud forest being mainly restricted

to slopes protected from insolation; and (2) the coarse

resolution of the map hindered the accurate repre-

sentation of the naturally fragmented and dispersed

distribution of montane cloud forest, resulting in an

underestimation of its extent. Alcántara et al. (2002) in

turn, confirmed that montane cloud forest follows com-

plex distribution patterns along elevation, and that its

geographic distribution follows an archipelago-like pat-

tern across Mexico that has not been thoroughly investi-

gated. Cayuela et al. (2006) found major discrepancies

between coarse-scale maps and fine-scale maps showing

the extent and distribution of montane cloud forest.

Montane cloud forest is associated with microclimatic

conditions (persistent mist or clouds at the vegetation

level, resulting in the reduction of direct sunlight and thus

of evapotranspiration) that create large local differences

in mountainous areas (Brown & Kappelle 2001). The

spatial resolution of climatic surfaces do not capture all

the variation that may occur at a resolution of 1 km

particularly in mountainous areas, owing to the overall

low density of available climate stations, and because

locally important drivers such as aspect may be ignored

(Hijmans et al. 2005). This could lead to a non-definitive

solution as occurred in the present study. Although

accuracy in classification of montane cloud forest was

improved through the use of probability estimates, there

was an increased misclassification of pine–oak forest as

montane cloud forest. The ROC analysis improved classi-

fication, but generalizing this analysis to more than two

classes is problematic (Hand & Till 2001; Lachiche & Flach

2003; Fawcett 2006). Future work may include further

studies on the feasibility of finding a globally optimal

multi-class decision criterion.

Tropical deciduous forest and pine–oak forest were also

confused in Rzedowski’s map. While tropical deciduous

forest classification accuracy was markedly improved

with climatically based random forests models, there was

still a high commission rate of pine–oak forest as tropical

deciduous forest (19 plots) in our final model, and the

estimated Kappa value remained low. Rzedowski (1978)

pointed out that the lower warm limits of pine–oak forest

in different parts of Mexico are occupied by discontinuous

oak forests, which are very common in the dry hills

of the Central Valley of Chiapas, and can be found at

elevations as low as 700 m a.s.l. This vegetation type

is predominantly composed of deciduous Quercus

species with microphilous and sclerophyllous leaves:

Table 2. Total extent of Southern Mexican vegetation types as estimated by Rzedowski’s potential vegetation map and by the climatically-based

random forests model. Rzedowski (1978).

Vegetation type Potential vegetation map Area (km2) Differences (km2) Differences (%)

Tropical deciduous forest Rzedowski 66 963

Climatically based 69 659 2696 4.03

Tropical evergreen forest Rzedowski 182 637

Climatically based 189 015 6378 3.49

Tropical sub-deciduous forest Rzedowski 40 682

Climatically based 37 965 � 2717 6.68

Pine-oak forest Rzedowski 58 134

Climatically based 52 174 � 5960 10.25

Montane cloud forest Rzedowski 13 924

Climatically based 17 880 3956 28.41

Aquatic vegetation Rzedowski 17 390

Climatically based 20 264 2874 16.53

Thorn forest Rzedowski 9882

Climatically based 6376 � 3506 35.48

Xerophytic shrubland Rzedowski 1811

Climatically based 1203 � 608 33.57

Pastureland Rzedowski 3162
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Q. peduncularis, Q. polymorpha and Q. conspersa are the most

common species, and this particular physiognomy distin-

guishes them from pine–oak forests occurring at higher

elevations with temperate humid conditions (composed

of perennial Quercus species, with macrophilous leaves).

These characteristics are suggested to be adaptations to

drought conditions. In the present study, 12 plots from

the group of 20 oak forest plots were classified as tropical

deciduous forest, thus reflecting climatic conditions for

potential tropical vegetation within the pine–oak zone.

This observation suggests that factors in addition to

climate may be important in determining the transition

between the two vegetation types. Several authors

(Sarukhán 1968; Pennington & Sarukhán 2005) have

suggested that these oak forests that now occur in com-

paratively warm climates represent relict vegetation asso-

ciated with previously cooler climate conditions.

Misclassification of tropical forest as pine oak also oc-

curred in mountainous areas with steep terrain where dry

forest occurs in close proximity with oak forest (Rzedows-

ki 1978; Challenger 1998b). Trejo & Dirzo (2000) found

that up to 75% of the steeper terrain in the tropical dry

forest areas of the state of Morelos are still covered by dry

forest, most of which can be considered as intact forest,

compared with areas of gentle slopes where agricultural

activity has resulted in o20% of the area being covered

by dry forest.

The results suggest that the potential vegetation map in

current usage may have insufficient spatial resolution,

particularly in areas of vegetation transition in which

fine-scaled climatic gradients determine the observed

vegetation type such as mountainous areas. However,

while this heterogeneity may be overlooked by coarse-

scale maps, steep temperature and precipitation gradients

in mountainous regions make computer-based predictive

mapping easier as the relationship between vegetation

and climate may be more apparent.

There are other caveats to this study. Validation of any

classification of potential vegetation is complicated by

human impact and other non-climatic determinants of

the actual vegetation found on the ground. Although the

plots chosen were assumed to have been subjected to only

a low level of human impact, given the long history of

human habitation in the region most of the vegetation

has been affected in some manner. There is therefore no

guarantee that the present vegetation corresponds to the

theoretical potential vegetation. Validation plots were

sited close to the assumed boundaries of Rzedowski’s

vegetation types. Although the thematic map assumes

that such boundaries can be drawn, such areas may

consist of ecotones with a mixture of species drawn from

more than a single vegetation type. Such issues raise

important questions regarding the underlying nature of

plant communities; these questions have been the topic of

ongoing debate in vegetation science since the time of

Clements and Gleason (Pickett et al. 2009).

Rzedowski’s classification has been used as a baseline

map for other widely used classifications. For example

Olson et al. (2001) used the scheme in a world ecoregions

map and Toledo & Ordóñez (2009) for a new ecoregions

map of Mexico. These uses of Rzedowski’s map rest on the

assumption that visible structural attributes can be used as

surrogates for the more illusive functional patterns that

are related to climate (Box 1995). Our study suggested

that a scheme based only on structural attributes, may not

accurately reflect relationships between climate and ve-

getation type. While analysis of structural characteristics

may assume that form follows function (Box 1995), the

relationship between vegetation structure and climate is

not straightforward. For example, transitions between

savannah and dry forest in Southern Mexico are known

to be determined by additional non-climatic factors

(Pérez-Garcı́a & Meave 2006). Rzedowski’s justified his

scheme on pragmatic, rather than theoretical grounds

arguing that the criteria used to describe the vegetation

types, were selected in order to facilitate recognition on

the ground (Rzedowski 1978). Explicitly climate-based

classification schemes such as the life zones approach of

Holdridge (1947) may provide greater insight into clima-

tically associated vegetation patterns and more studies are

required that contrast and compare the spatial patterns

suggested by these alternative classification schemes.

Multivariate techniques may also be used that allow

vegetation composition to define classification schemes

in relation to climate (Golicher et al. 2008).

Conclusions

Downscaling increased accuracy as measured by the

Kappa Index of Agreement. Multivariate analysis con-

firmed that many of the structural aspects of the vegeta-

tion that are used by the Rzedowski classification are

associated with climate, but it also indicated some of the

weaknesses in the underlying basis of this classification

system. Rzedowski’s scheme for vegetation classification

may require further modification in order to be an

effective tool for research into vegetation–climate rela-

tionships. Further research on the relationship between

vegetation type and climate is required in order to pro-

duce vegetation maps that can inform regional decision

making. This may be particularly important in the current

context of changing climate.
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M.E., Medina Chena, A., Álvarez Palacios, J.L., Ibáñez
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M. & Ramı́rez-Marcial, N. 2008. Applying climatically

associated species pools to the modelling of compositional

change in tropical montane forests. Global Ecology and

Biogeography 17: 262–273.
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Navarro-Sigüenza, A.G. 2006. Tracking population

extirpations via melding ecological niche modeling with

land-cover information. Ecological Modelling 195: 229–236.

Pickett, S.T.A., Cadenasso, M.L. & Meiners, S.J. 2009. Ever

since Clements: from succession to vegetation dynamics

and understanding to intervention. Applied Vegetation

Science 12: 9–21.

Prasad, A.M., Iverson, L.R. & Liaw, A. 2006. Newer

classification and regression tree techniques: bagging and

random forests for ecological prediction. Ecosystems 9:

181–199.

Puig, H. 1972. Memorias I Congreso Latinoamericano de Botánica.

La sabana de Huimanguillo, Tabasco, M é xico, M é xico, DF
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Nacional de Investigaciones Forestales & Food and

Agriculture Organization (FAO), Mexico.

Secretarı́a de Medio Ambiente y Recursos Naturales

(SEMARNAT). 1998. Mapa de suelos dominantes de la

República Mexicana. Scale 1:4 000 000. Mexico.

Shi, T. & Horvath, S. 2006. Unsupervised learning with random

forest predictors. Journal of Computational and Graphical

Statistics 15: 118–138.

Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. 2005.

ROCR: visualizing classifier performance in R. Bioinformatics

21: 3940.

Siroky, D.S. 2009. Navigating Random Forests and related

advances in algorithmic modeling. Statistics Surveys 3:

147–163.

Stoms, D.M. 1992. Effects of habitat map generalization in

biodiversity assessment. Photogrammetric Engineering and

Remote Sensing 58: 1587–1591.
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