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Abstract. Bayesian methods incorporate prior knowledge into a statistical analysis.
This prior knowledge is usually restricted to assumptions regarding the form of probability
distributions of the parameters of interest, leaving their values to be determined mainly
through the data. Here we show how a Bayesian approach can be applied to the problem
of drawing inference regarding species abundance distributions and comparing diversity
indices between sites. The classic log series and the lognormal models of relative- abundance
distribution are apparently quite different in form. The first is a sampling distribution while
the other is a model of abundance of the underlying population. Bayesian methods help
unite these two models in a common framework. Markov chain Monte Carlo simulation
can be used to fit both distributions as small hierarchical models with shared common
assumptions. Sampling error can be assumed to follow a Poisson distribution. Species not
found in a sample, but suspected to be present in the region or community of interest, can
be given zero abundance. This not only simplifies the process of model fitting, but also
provides a convenient way of calculating confidence intervals for diversity indices. The
method is especially useful when a comparison of species diversity between sites with
different sample sizes is the key motivation behind the research. We illustrate the potential
of the approach using data on fruit-feeding butterflies in southern Mexico. We conclude
that, once all assumptions have been made transparent, a single data set may provide support
for the belief that diversity is negatively affected by anthropogenic forest disturbance.
Bayesian methods help to apply theory regarding the distribution of abundance in ecological
communities to applied conservation.
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INTRODUCTION

Ecology is a naturally uncertain discipline in which
data sets hold ambiguous messages. Applying appro-
priate methods of statistical analysis and interpreting
their results is a continuing challenge. Statistical arti-
facts can, at times, lead to lack of consensus over fun-
damental tenets of ecological theory, such as the re-
lationship between diversity and disturbance (Oksanen
1996). Observational data cause particular difficulties.
Recently the traditional reliance on null-hypothesis
testing as an automated inferential technique has been
questioned (Anderson et al. 2000, Johnson 2003). Al-
ternative forms of drawing inference that focus atten-
tion on model comparison, rather than evaluating ev-
idence concerning inconsequential null models, have
been advocated (Guthery et al. 2003). The Bayesian
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approach to inference is attractive due to its simplicity
and consistency (Lindley 2000). Bayesian analyses are
set up in terms of evaluating the strength of evidence
in favor of meaningful statements given a set of clearly
stated prior assumptions. The focus is on providing the
distribution for parameters of interest (Ellison 1996),
conditional on these assumptions. The Bayesian ap-
proach can clarify how inference is being achieved and
show how uncertainty associated with predictions en-
ters an analysis. An emphasis on multiple working hy-
potheses helps to make data analyses more informative
with respect to the real ecological questions under con-
sideration (Hilborn and Mangel 1997).

Community ecologists have been slow to explore the
practical potential of Bayesian methods, even though
they are now routinely used in other disciplines to ad-
dress delicate inferential problems where objectivity is
a strict requirement (Burton et al. 1998, Meyer and
Millar 1999). This may in part be attributed to the
paucity of published works showing applications in a
realistic ecological context. This situation is exacer-
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bated by the relative inaccessibility of the specialized
statistical literature. To begin to fill this gap we here
provide a simple example of how a Bayesian analysis
can address one of the commonest inferential problems
met by field ecologists, that of comparing species di-
versity between areas where sample sizes vary.

There is a bewildering array of indices of species
diversity. Either implicitly or explicitly they are based
on models of the relative abundance of species. The
differences between them revolve around the emphasis
each places on richness and equitability. The most prac-
tical use of diversity indices is to make comparisons
between sites. However, in order to do this, sampling
effects must be accounted for (Gotelli and Colwell
2001). This can be confusing and easily lead to errors
of interpretation. Although statistics cannot remove
bias caused by poor sampling design, adopting a Bayes-
ian approach allows the linkage between species-di-
versity indices and models of relative abundance to be
made explicit.

Parametric models of relative abundance are typi-
cally used less often than are diversity indices by field
ecologists. This seems to be because a conventional
parametric form for an underlying model has never
been fixed. To explain why, we briefly outline the his-
torical development of two classical models of relative
abundance: the log series and the lognormal. The log-
series model was published in 1943 (Fisher et al. 1943).
Fisher proposed that this could be used to describe the
apparent abundance of different species. He derived it
as a limiting form of the negative binomial distribution
by assuming that the underlying abundances have a
gamma distribution. Later, Preston (1948) suggested
that the underlying abundance distribution could be
lognormally distributed. This distribution has consid-
erable theoretical attraction. If many small effects act
multiplicatively, as occurs when populations fluctuate,
then a lognormal distribution automatically arises. It
has been shown that a few simple assumptions regard-
ing the properties of neutral models of community
structure lead to distributions with a similar form to
the lognormal (Sugihara 1980, Bell 2000, Hubbell
2001). While these distributions are often subtly dif-
ferent from a lognormal, they are usually similar
enough to be indistinguishable in practice (McGill
2003).

Despite the virtues of simplicity, communicability,
and theoretical backing, the lognormal distribution has
a most unfortunate weakness. The empirical abundance
distributions of samples of individuals rarely look any-
thing like it (Dewdney 1998). Instead of the expected
unimodal shape of the histogram of logged abundances,
relative abundances in samples tend to form a mono-
tonically declining inverse ‘‘J’’ curve. This consistent
empirical lack of fit would be expected to rule out a
model. However in this particular case it does not. Lack
of fit is almost inevitable due to sampling effects. Under
the lognormal most species are comparatively rare. As

ecological samples are not usually large enough to in-
clude more than half the potential species, the rest of
the distribution is hidden in the non-observed species.
Although rare species are arguably the most important
components of diversity, their abundances are inevi-
tably poorly typified (Pielou 1977). The difficulty be-
comes even more acute as species richness increases.
This is one of the greatest challenges that any study of
diversity has to confront. Sound inference seems hard-
est to achieve in exactly the circumstances in which it
is most desirable. Those (of us) whose field work is in
the poorly studied, yet species-rich, tropics face by far
the most difficult situation.

Inference is impossible without assumptions. Preston
(1948) did suggest a reasonable one. The lognormal
distribution could be truncated using a ‘‘veil line.’’ In
other words, Preston assumed that species with an ex-
pected abundance lower than 1 would not be found in
a sample. This straightforward idea was a sensible short
cut for its time. However it is not mathematically jus-
tifiable (Dewdney 1998). The abundances of the rarer
species in the sample inevitably cross the line in both
directions. A superior solution is to return to Fisher’s
original derivation of the log series while assuming that
the Poisson model of sampling also applies to the un-
derlying lognormal (Cassie 1962). Once this is done
the two seemingly competing models become rather
similar in their underlying structure (Dewdney 1998).
The so-called ‘‘Poisson lognormal distribution’’ is very
well known to statisticians, but has been underused by
ecologists, because of the technical nature of model
fitting using maximum likelihood (Kempton and Taylor
1974, Hayek and Buzas 1997).

The development of the Markov-chain Monte Carlo
(MCMC) simulation removes many of the technical
problems involved in fitting models involving distri-
butions with more than one level of stochastic vari-
ability. Modern Bayesian methods rely on using
MCMC to simulate the posterior distribution. An ac-
cessible introduction is provided by Link et al. (2002),
and details of the basis of MCMC and techniques for
its implementation are described in Gilks et al. (1996).
The output of an MCMC simulation is a long list of
parameter estimates. If the MCMC algorithm has been
designed correctly, then the distribution of these sim-
ulated parameters will be very close to that of the actual
posterior distribution. A useful result is that it is easy
with MCMC to obtain credible intervals for the pos-
terior abundances of all species, conditional on the data
and distributional assumptions. MCMC is in one sense
producing simulated communities, which links the
technique to a common theme in theoretical ecology.

Implementation of MCMC simulation of Bayesian
posterior distributions has been made easy by the de-
velopment of the BUGS program (Spiegelhalter et al.
1999), which automates the choice and coding of the
algorithms for the estimation, allowing the user to con-
centrate on developing the statistical models. BUGS is
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freely available on the Internet.5 Fitting most com-
pound distributions using MCMC is simple. The inputs
to models such as the Poisson gamma or Poisson log-
normal are vectors of the number of individuals for
each species. No further mathematical assumptions are
required, beyond ‘‘uninformative’’ priors for the hyper
parameters.

The MCMC solution to the problem of model fitting
is, however, only partial. The rare-species effect re-
mains to be settled. The usual practice is to ignore
species that are not found in a sample of individuals.
This implies that they are not part of the community
that the sample has been drawn from, even though this
assumption is not stated and perhaps not deliberately
made. Some researchers do attempt to estimate the
number of species from a sample (e.g., Colwell and
Coddington 1994). Unfortunately these methods appear
to be unreliable unless the underlying abundance dis-
tribution is known (O’Hara 2005).

Knowledge about the species that are to be found in
a region can be used to place a limit on the number of
species that may be expected to be found in a sample.
In most practical conservation settings, even in the
tropics, some relevant knowledge of a species pool is
available. It can come from replication within a study,
reference collections, previous studies, or, in the very
worst case, informal natural-history observations made
in the surrounding area. This provides an upper bound
on the number of species. Absence of a species in a
sample of individuals can then be represented explicitly
by zero abundance rather than a missing value. Of
course adding zeros to the data instead of assuming
complete absence adds an assumption, although it can
usually be justified. Many ecologists naturally assume
that small samples have been drawn from open com-
munities. In other words, as samples become larger
they eventually include a representative from most spe-
cies present in a regional species pool. Whether very
rare species are considered accidentals or genuine
members of the community is an ecological, rather than
a mathematical, issue. It seems preferable to make the
issue explicit and thus open it to scientific, rather than
statistical, criticism. We will return to this issue in the
Discussion, below.

We illustrate the power of this approach, and the
associated MCMC fitting routine with a simple ex-
ample involving the fruit-feeding butterflies of Mon-
tebello National Park, Mexico. The example uses the
sort of data that is typically produced by comparatively
short, although nevertheless costly, field campaigns in
the tropics. The researchers were particularly interested
in the hypothesis that diversity differed among four
forest sites in the study area. The first of the four areas
was in comparatively undisturbed forest while the other
three had suffered varying amounts of anthropogenic
disturbance. Our goal was to provide an informative

5 ^http://www.mathstat.helsinki.fi/openbugs&

and accurate means of comparing diversity for data sets
differing in their sample size while fully quantifying
the uncertainty involved in the inferential process and
keeping the assumptions transparent. We also wanted
to emphasize the incorporation of expert knowledge
concerning the presence of rare species in the region
in order to help solve a delicate inferential problem.
The hope is that the method outlined in this study may
be considered by field ecologists as an alternative to
traditional methods for estimating diversity when the
main goal is to make comparisons between sites.

MATERIAL AND METHODS

The data

The data for the example come from a one-year study
on diversity of fruit-feeding butterflies in Montebello
National Park, Chiapas, Mexico. This is an area of
mountain rainforest (sensu Breedlove 1981) that has
been affected by a range of anthropogenic activities.
In 1998 the park suffered a severe fire. From June 1997
to May 1998 sampling of fruit-feeding butterfly diver-
sity was undertaken in four patches with differing veg-
etation types ranging from undisturbed species-rich
forest to highly disturbed secondary areas. The first
area was undisturbed forest. The a priori hypothesis of
the researchers was that butterfly diversity in this area
might, in some respect, be either higher or lower than
in other areas. Full details of the sampling scheme used
are provided by Ruiz-Montoya et al. (2000). Traps and
trapping occasions were replicated. However many
traps were stolen or vandalized leading to less repli-
cation that would have been ideal. Crucially, there were
marked differences in sampling intensities between
sites. All the essential information in the data, apart
from the identities of the individual species, can be
condensed into four vectors of abundances of individ-
uals, one for each site. These data are shown concisely
in Fig. 1 as a series of empirical rank-abundance plots
with the number of individuals per species included.
There were a total of 50 species found in the pooled
data.

The models

The classic detailed investigation of the properties
of the lognormal and log-series models is given by
Kempton and Taylor (1974). Both models are identical
at their lowest level. It is assumed that the number of
individuals of species i, ni, that are found in a sample
come from a Poisson distribution with mean mi:

n 2m im eiPr(N 5 n) 5 .
n!

The mi’s vary between species, and can be described
by some distribution. There are many candidates for
this distribution, but here we shall only examine two.
The lognormal is the following:
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FIG. 1. Rank–abundance plots with fitted veiled lognor-
mal curves. Numbers refer to number of individuals of each
butterfly species caught over the space of a year in each of
the four survey areas (Montebello National Park, Chiapas,
Mexico). The dots represent the underlying points upon which
the numbers have been superimposed. Note the y-axis log
scale.

1 2 22(1/2s )(log m 2m )i 0f (m ) 5 ei 2m Ï2ps0

where m0 and s2 are the two hyperparameters. In other
words, they are the parameters that describe the dis-
tribution of the mi’s. The mean of the distribution is
exp(m0 1 ½s2) and the variance is (exp(s2) 2 1)

exp(2m0 1 s2). An alternative underlying distribution
could be a gamma distribution:

ab
a21 2bm if (m ) 5 m ei iG(a)

where a and b are the hyperparameters of the distri-
bution. The gamma distribution has a mean of a/b, and
a variance of a/b2. This distribution is much more flex-
ible than the lognormal, making weaker assertions
about the allowable shape of the underlying distribu-
tion. If a . 1, the distribution looks similar to the
lognormal distribution. At the extreme, when a tends
to 0, the log-series is produced (Fisher et al. 1943).
The difficulty with the gamma distribution from a gen-
eral ecological perspective is that fitting it tells us less
about community properties than does the lognormal.
The two parameters are more difficult to interpret, as
they are less well known and are not as well linked to
theory. On the other hand the s of the lognormal is a
very well understood measure of community equita-
bility in a theoretical context.

The models were fitted using a Bayesian approach.
For this, prior distributions need to be specified. Here
we used vague, non-informative priors. The prior used
for the s of the lognormal was a gamma distribution
with shape 5 1 and scale 5 0.01. The prior for the a
of the gamma distribution was an exponential with rate
5 1. For b we used a gamma with shape 5 0.1 and
scale 5 1. These priors are flat over the region of in-
terest. Trials showed that the small changes in the form
of the priors had little or no practical influence on the
outcome. In some circumstances informative priors
could be useful if it is desired to strengthen inference
by combining data with the result from previous stud-
ies.

The simplicity of these particular models does not
demonstrate the full power of the Bayesian approach
for solving otherwise intractable problems. In a prag-
matic sense, so long as uninformative priors are used,
a Bayesian approach can be seen as another way of
reproducing the results of maximum-likelihood distri-
bution fitting. However there are some very convenient
properties that can be used to great advantage in this
setting, as we will show. The posterior distribution of
any secondarily derived parameters can be calculated
within the model. We can therefore simultaneously cal-
culate any additional parameters that we could be in-
terested in together with their distributions under the
sampling assumptions made. Obvious candidates are
Shannon’s or Simpson’s indices. These can be based
on abundances that are simulated by MCMC (Markov-
chain Monte Carlo). This provides an easy way of pro-
viding confidence intervals for diversity indices while
at the same time fitting distributions. It can also provide
credible intervals for the posterior abundances of all
species, including those not actually found, although
the interpretation of the latter result must be placed
very firmly in its mathematical context.
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Model comparisons

We compared the fit of the models using the deviance
information criterion (DIC) (Spiegelhalter et al. 2002).
This is a Bayesian equivalent of AIC (the Akaike in-
formation criterion) and can be seen as a measure of
optimality of a model, trading off complexity, and fit
to the data. In principle, lower values of DIC suggest
that a model should be preferred. However, the prop-
erties of this statistic are still being investigated, so the
results should be viewed with some caution.

Calculating diversity indices

Models were analyzed within BUGS and by using
the coda package (Plummer et al. 2004) in the R sta-
tistical environment (R Development Core Team 2004).
The BUGS code, the data used, R code, and a TclTk
graphical interface to the models are available in the
online Supplement to this paper. The models were set
up to provide confidence intervals for many commonly
used diversity indices and dissimilarity measures. Here
we demonstrate their utility by showing only two stan-
dard diversity indices that we calculate using posterior
abundances under the two models: (a) Shannon’s index,
H; and (b) the inverse of Simpson’s index, 1/D.

RESULTS

Rank-abundance curves are a commonly used means
of visualizing relative abundances (Wilson 1991). The
fitted curves in Fig. 1 were produced using the R pack-
age ‘‘vegan’’ (J. Oksanen, unpublished software),
which provides useful complementary diversity anal-
yses to the Bayesian method we present. In particular
the lognormal can be treated as a generalized linear
model with a logarithmic link function. A veiled log-
normal can be analyzed by fitting a nonlinear model
for one parameter while estimating other parameters
and the log-likelihood within a generalized linear-mod-
el framework (J. Oksanen, unpublished software
[2004]).6 While this can be helpful in some contexts
the procedure is difficult to follow and is known to fail
with small data sets. It does not provide measures of
fit that are clearly interpretable with respect to a model
of the data-generating process. As implemented in R,
confidence intervals are not available for the key pa-
rameters of interest. It is typically used to compare fits
with alternative models such as the Zipf–Mandelbrot
rather than drawing comparisons between sites directly.

We fitted the Poisson gamma and the Poisson log-
normal distributions after adding zeros to represent
species that were not caught in every area but found
in the pooled data and thus assumed to be potentially
present. All four vectors had a length of 50. Markov-
chain Monte Carlo (MCMC) can sometimes fail to con-
verge. This makes diagnostics vital when new MCMC
models are being developed and tested. Few problems
were expected given the comparative simplicity of
these models. Nevertheless in order to check conver-

gence we ran two chains for each model for 10 000
iterations using over-dispersed initial values. The Gel-
man diagnostic was used on key variables to check for
convergence. In the case of the Poisson lognormal we
applied it to ss. In the case of the Poisson gamma we
looked at a. Values of the diagnostic were not sub-
stantially above 1, clearly showing that there were no
problems with convergence. Fig. 2 shows the trace
plots for the s of the lognormal. The trace demonstrates
good mixing. Similarly satisfactory results were ob-
served for the Poisson-gamma model. We can therefore
assume that these models can usually be safely run
using a single chain. A Heidelberger and Welch (HW)
test (Heidelberger and Welch 1983) can then be used
to establish the length of the chain needed for reli-
ability. Based on the HW diagnostic we report the re-
sults from 6000 iterations after discarding the first 1000
as a burn in. The chain can be thinned by a factor of
3, although with a small data set thinning is unnec-
essary given the capacity of contemporary computers.

Table 1 shows a breakdown of the deviance infor-
mation criteria (DIC). This suggests that an underlying
gamma provides a better fit, particularly for areas 2, 3,
and 4. As further analysis will clarify, these are the
least diverse assemblages. The smallest DIC suggests
the model that makes the best short-term predictions
and should be interpreted in the same way as AIC.
However, if the difference between DIC is, small (,5),
models provide similar levels of fit. In this case the
choice of model should take into account other factors,
such as interpretability and connection to ecological
theory. The lognormal thus might still be considered.
It has the useful property of interpretability even if it
does not fit the data quite as well as the gamma. Lack
of fit can arise from several causes. Even though sam-
pling stochasticity was included in the models, extra
Poisson variability in the data may still arise through
the effects of overdispersal due to sampling artifacts
rather than as genuine features of the underlying dis-
tribution.

Fig. 3 shows the posterior distributions for s, the
key parameter of the lognormal distribution. Results of
MCMC simulations can be summarized in many forms,
emphasizing that parameters in a Bayesian analysis are
treated as random variables. Here the mode for the 2000
simulations is given together with 95% higher posterior
density (HPD) confidence (or credible) intervals cal-
culated within R (Martyn Plummer, personal commu-
nication). HPD intervals are similar to the usual con-
fidence intervals except that instead of having the same
proportion in each tail the tails are defined so that the
density within the interval is higher than the density
outside the interval on either side.

The overall median for all four areas can be extracted
and used as a reference baseline. This lies outside the
95% HPD interval for the s of area 1. When two pa-
rameters are of interest they form a cloud of points,
the density of which can be represented as contour
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FIG. 2. Trace and density plots for s, the standard deviation of the lognormal relative-abundance model, produced using
the coda package in R (Plummer et al. 2004). For all density plots, N 5 2333 simulations; bandwidths are given on the right
side of each density plot.

TABLE 1. Breakdown of the deviance information criterion (DIC) for both models calculated for all four areas.

Model

Area 1

DIC D̄ pD

Area 2

DIC D̄ pD

Area 3

DIC D̄ pD

Area 4

DIC D̄ pD

Lognormal 77.1 49.7 27.4 62.7 39.9 22.8 60.9 39.7 21.2 50.7 32.6 18.1
Gamma 74.2 45.3 28.9 56.3 34.0 22.3 56.4 34.9 21.5 44.2 27.2 17.0

Difference 2.9 6.4 4.5 6.5

Notes: D is the deviance; D̄ is the posterior mean of 22logL; pD is the estimated number of parameters. Note that DIC 5
D̄ 1 pD. Data are from a one-year study of diversity of fruit-feeding butterflies in four areas of Montebello National Park
(Chiapas, Mexico) that differed in vegetation type and history (ranging from undisturbed species-rich forest [area 1] to highly
disturbed secondary forest [area 4]).

lines. This is a convenient means of investigating the
relationship between them. In this case it can be seen
that the two diversity indices, 1-D (the inverse of Simp-
son’s) and H (Shannon’s), are quite closely correlated,
and again area 1 stands out clearly. Differences be-
tween sites can also be extracted and comparisons can
be made. Formal hypothesis testing is not usually con-
ducted by Bayesian analysts. However if over 95% of
the posterior density of the differences lies above or
below zero this can be taken as evidence of a notable
difference between sites, providing the assumptions of
the model have been met.

Fig. 4 shows a similar breakdown of the Poisson
gamma model. The shape parameter, a, now becomes
our guide to equitability. If a is larger than 1 the gamma
appears closer in form to a lognormal. Again the model
shows the difference between area 1 and the other three
areas.

The confidence regions for the Shannon’s and Simp-
son’s indices are almost identical under either model.

We conclude that the intervals provided by the MCMC
simulation for these indices are therefore mainly a re-
sult of the assumption of Poisson variability in the
sampling process. An alternative technique that does a
similar task is bootstrap resampling. We found that it
provided similar results and confidence intervals. We
stress, however, the convenience of combining esti-
mation of these metrics in the same analysis that fits
the underlying distributions rather than using a com-
bination of separate techniques.

A final feature of the MCMC procedure is the ability
to pool the simulated abundances of all the species in
order to produce a density plot for the posterior relative
abundances (Fig. 5). Notice that this is not quite the
same as the lognormal model of abundance, which is
derived from the posterior abundances. The differences
between the two density plots help to reveal where the
data dominate the underlying model. In this case it is
clear that the ‘‘less diverse’’ plots all had more indi-
viduals for the common species than the model ex-
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FIG. 3. Posterior distributions for the s parameter of the lognormal, confidence regions for the two diversity indices, and
posterior distributions for the difference in s between sites. Boxes represent the interquartile range. Whiskers with short bars
extend to 1.5 times the length of the box. Whiskers with long bars show the 95% higher posterior density (HPD) intervals.

pected. With such small data sets the conclusions drawn
have to be approached with caution, but the ability of
the MCMC procedure to clarify features in the data
while maintaining the abstraction needed for evaluating
theory is demonstrated.

DISCUSSION

The best solution to the problems of inference that
arise from small sets of data is to obtain more data.
However this is not always possible. It is the role of
statistics to ensure that the available data are properly
interpreted rather than discarded as completely unin-
formative. Bayesian analyses are ideal for making use
of provisional information as the interpretation of the
results includes uncertainty. The main finding we draw
from this study is that anthropogenic disturbance of the
forest of Montebello National Park (Chiapas, Mexico)
is believed to result in a shift toward a less diverse
assemblage of fruit-feeding butterflies. It was possible
to derive this tentative statement from a relatively
short-term study. Considerable temporal and spatial
variability is to be expected in butterfly communities
(DeVries and Walla 2003). When the results of fitting
models such as these are reported, the assumptions in-
volved must be made very clear. In our examples, if
confidence limits for the diversity statistics are cited it
should be mentioned that they are derived under the
assumption of simple Poisson sampling. The limited

temporal and spatial extent of the survey must also be
mentioned. If width parameters, or their derivatives,
are used it should be stated that they are obtained from
assuming Poisson sampling from an underlying log-
normal, or gamma, distributed species pool consisting
of 50 species.

The overall findings derived from this method do not
necessarily differ from those obtained through alter-
native approaches. The key virtue is found in the sim-
plicity and transparency of the procedure. As MCMC
(Markov-chain Monte Carlo) has made the Bayesian
approach extremely accessible and easy to use, we sug-
gest that its power should be more widely exploited.
An interesting question is whether the conclusions
drawn from parametric model fitting would be expected
to differ from those drawn from analysis of diversity
indices alone. We feel that diversity indices that com-
bine both species richness and equitability apply to the
sample and are not truly inferential in the sense that
an underlying population model is not involved. Our
results confirmed this by showing that confidence re-
gions for the diversity statistics were independent of
the assumptions made regarding the prior form of the
underlying distribution. Thus whether or not this par-
ticular model-fitting technique is used, we suggest that
analyses of diversity should always include at least one
explicitly parametric index together with an estimate
of the associated uncertainty regarding its value.



February 2006 209BAYESIAN DIVERSITY MODELS

FIG. 4. Posterior distributions for the a parameter of the gamma, posterior confidence regions for the two diversity indices,
and posterior distributions for the difference in a between sites. Boxes represent the interquartile range. Whiskers with short
bars extend to 1.5 times the length of the box. Whiskers with long bars show the 95% higher posterior density (HPD)
intervals.

A further strength of the Bayesian framework is the
facility with which models can be extended, to provide
both greater predictive power and greater insight into
processes operating in ecological communities. More
complex models can be built that reflect the full com-
plexity of both study design and ecological phenomena
themselves (e.g., Gelfand et al. 2005). Hierarchical sta-
tistical models are natural complements for the hier-
archical structure of communities themselves (Whit-
taker et al. 2002). More complex formulations are pos-
sible where the structure of data sets allows. For larger
data sets, overdispersal terms can easily be added in
order to model the effects of extra Poisson variation
(e.g., O’Hara 2005), but for small data sets like those
here it is not possible to separate out the variation due
to overdispersal from the variation in the actual abun-
dances.

Kempton and Taylor (1974) stressed that very little
information regarding an underlying relative-abun-
dance distribution can be derived from a sample with-
out adding assumptions regarding the maximum num-
ber of species. Inferential diversity indices, such as the
s of the lognormal in our analyses rely on this. Our
approach was based on the work of Kempton and Tay-
lor, and the results we obtained support this interpre-
tation. Under some forms of noninferential analyses,
species-poor areas that support a small number of

equally abundant species can appear more equitable
than species-rich areas with many rare species (Wilson
et al. 1999). This is a particular problem with Simpson’s
index. Treating rarity explicitly as nonoccurrence en-
sures that the problem is at least handled consistently.
Either of the two width parameters from the underlying
models can be used as diversity indices. The familiarity
of the lognormal makes s the most easily interpretable
measure of equitability. Species-poor samples occur
either because they contain a low total number of in-
dividuals, in which case the uncertainty regarding the
value of the width parameter is naturally increased, or
because the probability of the capture of rarer species
is extremely low due to a genuinely wide distribution
of abundances. These alternative explanations are made
very explicit under our analysis.

A reviewer of an earlier draft of this paper suggested
that fixing the total number of species through adding
zeros to the data was in some respects un-Bayesian.
The veil line should be estimated as a parameter. In
fact either model presented in the paper can be easily
extended within BUGS to accommodate the possibility
that species given zero abundance in a sample are gen-
uinely not present in the community rather than merely
being present, but at a low abundance. It can be done
through fitting mixture models. These assume that there
is some additional probability, p, that a species is pre-
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FIG. 5. Posterior relative-abundance distributions (solid
lines) and the fitted lognormal model (dashed lines).

sent that is independent of Poisson sampling. If the
species is present then the number of individuals sam-
pled is as described in the original models. If the spe-
cies is genuinely not part of the community, then we
also will have sampled zero individuals, but the infor-
mation will not be used when fitting a relative-abun-
dance distribution. The differences between the two
situations can in some sense be teased apart by using
the zero inflated Poisson model which models under-
lying presence or absence as a binomial process:

2m ip.e 1 (1 2 p) n 5 0
Pr(N 5 n) 5i n 2m im ep n . 0.

n!

When implementing these models we found that the
result was to shift uncertainty away from the values
for the parameters of the underlying models and toward

uncertainty regarding the number of species. As there
is usually much better information available regarding
the number of species than the shape of a distribution,
we concluded that for practical purposes it was pref-
erable, if not ideal, to use a fixed number of species.
The method can be extended easily to include sensi-
tivity analysis regarding this assumption.

We emphasize that given the complexity of ecolog-
ical communities we do not expect the assumptions
used in building any of these models to hold in their
entirety. This is precisely why statistical modeling
should be transparent and open to criticism. We agree
with Box (1979:202) in believing that ‘‘all models are
wrong but some are useful.’’ It is impossible to rig-
orously test all the assumptions of a model using a
single data set. To suggest otherwise would be very
misleading. DIC (deviance information criterion) did
produce an assessment of the models fit. The difference
between competing models based on this criterion
alone was not great. This was also expected with such
small data sets. Many similar models could fit equally
well. The usefulness of these models is derived from
the insight they provide regarding the true question of
interest, which in this case concerned the difference
between sites, not between models.

Samples taken from ecological communities are al-
ways small when placed in their true temporal and spa-
tial context. Thus they can hardly be expected to reveal
a complete picture unaided. Classical independent rep-
lication is often impossible in observational data sets
(Reckhow 1990, Oksanen 2001). The Bayesian attitude
to the problem of non-independence is not to ignore it,
but to make it explicit and draw on other sources to
support inference where necessary. In some respects
this provides a bridge between theoretical and empir-
ical ecology (Holling and Allen 2003). A model that
suggests a prior distribution is an explicit requirement
for Bayesian analysis. Ecological theory is one source
for priors (Wade 2000, Ludwig et al. 2001), and the-
ories which are able to quantify uncertainty provide
useful priors. Theories that suggest overoptimistic lev-
els of precision are less helpful. In our example we
could have used Preston’s canonical hypothesis to pro-
vide a more informative prior distribution for the var-
iance of the lognormal model. We did not do this be-
cause although the canonical hypothesis suggests the
most probable values for s we did not, at this stage,
have a suitable model for its probability distribution.
Meta-analyses could be used to find such a model. A
great strength of Bayesian analysis is that new evidence
can be added to our models if it becomes available,
making meta-analysis particularly straightforward.

Conclusion

We conclude, in view of our results, that a relatively
small data set can provide support for the belief that
butterfly diversity is negatively affected by anthropo-
genic forest disturbance. Edwards (1996) criticizes
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Bayesian methods on the grounds that data analysis
should be ‘‘journalistic’’ rather than ‘‘editorial.’’ We
prefer the transparent statement of assumptions that a
Bayesian analysis provides. Such methods would seem
particularly valuable for workers in as yet poorly stud-
ied tropical regions such as ours where conservation
concerns motivate ecological research. Under the
Bayesian paradigm, editorials can always be written
afresh as research proceeds. Bayesian ecologists adapt
and change their views in response to new evidence.
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SUPPLEMENT

The code for WinBUGS models, an example data set (Mexican butterfly diversity), and an R interface that will allow the
user to fit the compound distributions described in the paper to small data sets are available in this supplement (Ecological
Archives A016-012-S1).


