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ABSTRACT

Aim Statistical and ecological mechanisms shape species abundance

distributions (SADs). A lack of correlation between ecological gradients and

SAD shape would suggest that SADs are caused by purely statistical reasons.

We evaluated the variation in the shape of SADs for communities in

landscapes of differing variable connectivity, environmental heterogeneity,

species niches overlap and productivity.

Location Rainforests in the Madidi region (Bolivia).

Methods We compiled biological and environmental information on 65 sites

(a site being a group of two to six 0.1-ha plots where woody plants of a

diameter at breast height� 2.5 cm were inventoried). We built unveiled

(complete) SADs for each site and fitted Gambin models to those SADs. The

Gambin a parameter served as a metric of SAD shape. Low a values

characterize logseries-like SADs, while high a values characterize lognormal-

like SADs. For each site, we estimated landscape roughness, environmental

heterogeneity, species niche overlap and productivity. These variables were

related to SAD shape by means of variation partitioning.

Results SADs changed from logseries-like to lognormal-like along the

elevational gradient. Many of our predictor variables were correlated: 40.4% of

the variation in SAD shape could not be attributed to specific factors.

However, 50.62% of the variation in the SAD shape could be assigned to

individual predictor matrices: 28.4% was explained exclusively by niche

overlap, 15.41% exclusively by environmental heterogeneity, 5.20% exclusively

by landscape roughness and 1.6% exclusively by productivity.

Main conclusions Ecological processes related to the topographical/

environmental complexities that vary across the elevational gradient are

correlated with the SAD shape. Purely statistical mechanisms are apparently

not sufficient to explain the changes in SAD shape. The most important factor

is the mean overlap of the niches of the species of an assemblage: avoiding

competition with co-occurring species could be the most important

mechanism driving species relative success at the �100 km2 scale.
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INTRODUCTION

In its essential form, the species abundance distribution

(SAD) is a vector of ‘comparable abundances for the species

in a community’ (McGill, 2011), and thus one of the most

fundamental descriptors of any community. Many alternative

theoretical models have been proposed, and many fit empiri-

cal SADs equally well, making it difficult or impossible to

conclude from the shape of the SAD alone anything about

underlying statistical or ecological mechanisms (McGill et al.,

2007; McGill, 2011). Because of the practical limitation of

the curve fitting approach in particular, empirical evaluations

of SAD hypotheses lag behind important theoretical develop-

ments (McGill et al., 2007; McGill, 2011).

Although it is almost a universal law that most species are

rare and few are common, communities can differ in the

shape of SADs, from those where a few species are very

abundant and many are very scarce, to those where abundan-

ces are more evenly distributed across species. Here, we will

refer to those SADs where most species are very scarce as

logseries SADs (Fisher et al., 1943) and to those where abun-

dances are more even as lognormal SADs (Preston, 1948). We

use these as qualitative and purely descriptive terms which

are widely recognized, without necessarily claiming that these

two distributions exactly fit the data or even are the best pos-

sible fit. Both shapes (logseries and lognormal) constitute the

extremes of a continuum of potential SAD shapes. Although

previously unnoticed, changes in the SAD shape itself could

be a more tractable phenomenon than changes in species

abundances. Instead of asking why some species are more

abundant than others, this work asks why some SADs are

more lognormal or logseries than others.

Mechanisms shaping SADs can be statistical or ecological.

Examples of statistical mechanisms are constraints imposed

by the number of species and individuals (Locey & White,

2013), limited sampling from a pool of individuals (McGill,

2003; Green & Plotkin, 2007) or the central limit theorem

(Conlisk et al., 2012). Statistical mechanisms themselves

could have an ecological basis: for example, SADs might be

shaped by the number of species and individuals alone but

these aspects, in turn, could be determined by elevation,

nutrients or light availability. Therefore, empirical tests on

the relationship between SADs and environmental or com-

munity properties are still required (McGill et al., 2007; Yen

et al., 2013). A lack of correlation between the shape of a

SAD and environmental covariates would indicate that SADs

do not have an ecological basis and could be just a result of

statistical mechanisms (Yen et al., 2013).

There are several biological and ecological explanations for

the changes in the shape of SADs (reviewed by McGill et al.,

2007). The reasoning underlying most of these alternative

explanations is similar: communities where more species find

more and better opportunities would present more lognor-

mal SADs, whereas systems where only one or a few species

find good opportunities would present logseries SADs, with

most of the species occurring at low abundances. Both

neutral and niche-based views explain the SAD patterns by

evoking this general mechanism. From a neutral perspective

(Hubbell, 2001) space is considered the only resource for

which species compete, and ‘opportunity’ means ‘a place in

the space in which to live’. When many species struggle to

find available space in a local community, there are few

opportunities for each species, and most species tend to

occur at low abundances (reflected by logseries SADs). When

only a few species occur at each point, these could have rela-

tively more opportunities to be abundant, leading to more

lognormal SADs at larger scales (Hubbell, 2001). Such a bat-

tle for space is determined by the rate of immigration to a

given locality, a direct function of the quantity and effective-

ness of barriers to dispersal in the surrounding landscape.

Consequently, systems where dispersal is difficult would pres-

ent more lognormal SADs and systems where dispersal is

easy would present more logseries SADs (Hubbell, 2001; Car-

son & Schnitzer, 2009).

A second group of hypotheses develop a similar reasoning,

with the niche concept as a cornerstone. Habitats that offer

more niches to more species are expected to have more spe-

cies that attain relatively large numbers of individuals, and

thus more lognormal SADs. Therefore, more lognormal

SADs are expected in more complex or heterogeneous envi-

ronments and/or with less competitive overlap among species

(Cotgreave & Harvey, 1994; Ugland et al., 2007), as well as in

more productive environments (Hurlbert, 2004; Chase, 2010;

Brown, 2014).

The present work evaluates SAD shapes in the Madidi

region (Bolivia), one of the longest elevational gradients with

continuous forest cover in the world. This gradient from the

Amazon to the Andean highlands implies more disconnected

landscapes at higher elevations, where migration of individu-

als and dispersal of propagules is increasingly difficult

(Young, 1995; Gradstein et al., 2008; Graham & Fine, 2008;

Parra-Olea et al., 2012). Besides, we expect more complex

and heterogeneous abiotic conditions in the montane areas

than in the lowlands (Gentry, 1995; Vitousek, 1998; Gerold,

2008). Regarding the changes in the average overlap of spe-

cies niches, montane floras have been hypothesized to be

largely composed of climatic generalists colonizing from the

lowlands (Stevens, 1992; Ghalambor et al., 2006). However,

both isolated localities and more complex habitats should

favour the evolution of specialist species, even from a pool of

generalist taxa. There are also important changes in produc-

tivity associated with temperature changes in the gradient,

from luxuriant Amazonian forests at 300-m elevation to

dwarf ridge forests above 3000-m elevation (Vitousek, 1998;

Gerold, 2008; Gradstein et al., 2008).

The objective of the present work is to test for causes

underlying the variation in SAD shape at the �100 km2 scale

by characterizing the SADs of communities embedded in

landscapes of differing properties. To do this, we performed

variation partitioning to disentangle the effects of: (1) land-

scape roughness, (2) environmental heterogeneity, (3) niche

overlap, and (4) productivity, on the shape of the SAD curve.
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If SADs change from logseries to lognormal as topographical

complexity increases, then ease of dispersal would determine

the relative abundance of species (Hubbell, 2001; Carson &

Schnitzer, 2009). If SADs change from logseries to lognormal

as environmental heterogeneity increases, or in communities

where species show less niche overlap, then niche-based proc-

esses determine the SAD shape (Cotgreave & Harvey, 1994;

Ugland et al., 2007). Finally, if SADs change from lognormal

to logseries as productivity increases, then greater productiv-

ity would be correlated with more opportunities for more

species (Hurlbert, 2004; Brown, 2014). Note that some of

these hypotheses make opposite predictions about the direc-

tion of the logseries to lognormal change along the eleva-

tional gradient, given that the gradient in productivity is

opposite to the gradient of habitat and topographical

complexity.

METHODS

Study region and baseline floristic data

As part of the Madidi Project (http://www.mobot.org/mad-

idi) we carried out extensive standardized floristic inventories

in the Madidi region, located on the eastern slopes of the

Bolivian Andes (latitude 12�2504800 S to 15�4500000 S; longi-

tude 69�2804800 W to 66�3903600 W). For this study, we used

data from rain forests between 250 and 3600 m in elevation.

Dry forests and Polypepis stands were excluded from the

analyses, as well as a few plots without environmental infor-

mation (see below for the environmental variables consid-

ered). The rain forest dataset contains 94,322 woody plant

individuals with a diameter at breast height (d.b.h., at

130 cm from the rooting point) equal to or greater than

2.5 cm and rooting within the limits of 308 0.1-ha plots

(typically 20 m 3 50 m, exceptionally 10 m 3 100 m). This

dataset contains 2233 species and morphospecies, each of

which was vouchered at each visited locality, giving a total of

14,533 vouchers. All vouchers are deposited at the Herbario

Nacional de Bolivia (LPB) and many duplicates at the Mis-

souri Botanical Garden (MO). Our database is available for

consultation at TropicosVR (http://tropicos.org/PlotSearch.

aspx?projectid520), which functions as a permanent data

repository maintained by the Missouri Botanical Garden.

Data availability and the terms of use are described in the

data sharing and publication policy of the Madidi Project.

Measurement of the SAD shape of

a given assemblage

SADs can be obtained from any set of samples surveying a

given biological assemblage. In the present paper, we consid-

ered groups of two to six closely spaced plots (‘sites’). The

grouping of plots into sites took into account the goodness-

of-fit of the SAD model employed. Hence, prior to explain

the grouping of plots into sites, this section describes the

process of fitting a model to any given SAD and estimating

its shape.

We followed Chao et al. (2015), who characterized the

relationship between the true SAD in the entire assemblage

and the observed SAD in a sample using Good-Turing fre-

quency estimation. This statistical technique estimates the

probability of finding an object of an unseen class, given a

set of past observations of objects from different classes. The

unveiling process returns the relative abundances of all the

species estimated to be present in the assemblage, enabling

us to focus on the mechanisms driving the SAD shape and

leave sampling issues aside. Once we had estimated the spe-

cies abundances at each site using Chao et al.’s (2015)

approach, we modelled the shape of unveiled SADs by fitting

Gambin models, a purely statistical model demonstrated to

be highly flexible to different SAD shapes (Ugland et al.,

2007; Matthews et al., 2014). This model has a single param-

eter (a) that describes the shape of the SAD: low a values

are characteristic of logseries SADs whereas high a values

reflect lognormal SADs. Thus, the Gambin a parameter is a

good diagnostic (and ‘mechanism-agnostic’) tool for any

process that could affect the shape of the SAD curve (Ugland

et al., 2007; Matthews et al., 2014). The accuracy of the esti-

mation of each a parameter was assessed with bootstrapping

(999 times).

The unveiling process was implemented using code from

the ‘JADE.R’ appendix of Chao et al. (2015). To fit the mod-

els we employed customized functions in R that allowed us

to fit models to relative abundances, borrowing code from

the gambin R package (Ugland et al., 2007; Matthews et al.,

2014). Appendix S1 in the Supporting Information contains

methodological and technical details, all the R code needed

and a worked example.

Definition of sites and final floristic dataset

We defined ‘sites’ as groups of plots fulfilling the following

conditions: (1) they contain a minimum of 1000 individuals

(McGill et al., 2007; McGill, 2011); (2) they fit into a circle

of radius� 10 km, to limit the range of spatial scales eval-

uated; (3) they fit within an elevational band of �309 m,

which is the average elevational change needed for a full flo-

ristic turnover in the rain forests of our study region, as

measured by the first axis of a detrended correspondence

analysis; and (4) the predictions from a Gambin model fitted

to the SAD shape of a site must be statistically indistinguish-

able from the true SAD, according to a v2 test. The fulfil-

ment of this last condition ensured that all our estimates of

the SAD shapes of sites came from accurately fitted models.

The resulting 65 sites contained from two to six plots

(mean 5 3.88 plots), 1000 to 1838 individuals (mean-

5 1214), and 58 to 505 observed species (mean 5 240). Dur-

ing this process 56 plots could not be assigned to any site

and were excluded from the analyses. The final floristic data-

set contained 252 plots with 79,950 individuals belonging to

2110 species. Only a few individuals (1343 5 1.67%) were

excluded from the analyses because they could not be

assigned to any species or morphospecies. The location of

Causes for changes in the SAD shape
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the sites, the R code that conducted the assignment of plots

to sites and a summary of the characteristics of the 65 sites

(including TropicosVR plot name codes to allow the examina-

tion of our raw data) are presented in Appendix S2.

For the assemblage at each site, we calculated the Gambin

a parameter characterizing the shape of its unveiled SAD.

This was the response variable in subsequent analyses. The

following sections describe the measurement of all the proc-

esses that we hypothesized to affect the SAD shape. In all

cases, these predictors were measured at the site level

(n 5 65).

Estimation of the ease of dispersal

We estimated ease of dispersal by measuring topographical

complexity as follows.

1. We obtained elevation data for the Madidi region from

the ASTER Global Digital Elevation Map (DEM), version 2

(http://asterweb.jpl.nasa.gov/gdem.asp). This digital elevation

map has a 1-sec resolution (�30 m), and is the most accu-

rate topographic reference for the study area.

2. We extracted elevation data of concentric circles of radius

r km centred at each plot, r in {0.1, 0.5, 1, 2, 5, 10}. This

was done to assess the influence of the surrounding land-

scape at different scales.

3. We calculated the topographical complexity at each of

these circles with the average surface roughness index

Ra5
1

n

Xn

i51

jhij

where n is the number of pixels touching each circle and |hi|

is the absolute difference in elevation between the ith pixel in

the circle and the mean value of all pixels. Ra is expressed in

the same units as elevation, and is interpreted as the average

deviation of each pixel from a horizontal plane at the mean

elevation of the evaluated area (Ra 5 0 in a perfectly plane

horizontal surface, and no upper bound in theory).

4. For each r-value, the landscape roughness of a site was

estimated as the simple mean of the Ra indices of the circles

of that size surrounding each of the plots contained in the

site. Therefore, the landscape roughness matrix (R) contained

65 rows and 6 columns. All topographic data were handled

with the raster R package (Hijmans, 2014).

Note that landscape roughness can also be interpreted as an

environmental factor, and is probably correlated with envi-

ronmental heterogeneity. In this study, we interpret landscape

roughness as a purely dispersal-limiting agent only, once the

effect of environmental heterogeneity is removed (see below).

Environmental variables considered and estimation

of environmental heterogeneity

We measured superficial soil (0–30 cm below the litter layer)

properties at each plot, after air-drying samples and sieving

soils through a 2-mm sieve. The percentages of sand, silt and

clay were measured using the hydrometer method; soil pH

was measured in a 1:2.5 soil:H2O suspension; organic carbon

(C) was determined with the Walkley and Black method; and

total nitrogen (N) with the semi-micro Kjeldahl method

(Reeuwijk, 2002). We also measured calcium (Ca), magne-

sium (Mg) and potassium (K) using two extractive methods

for different sets of samples: (1) the 1 M ammonium acetate

solution method, and (2) the Melhich-3 extraction method

(Mehlich, 1984). The results from both methods are linearly

correlated in our study region, so we standardized all soil

measurements into comparable values (see Appendix 2 of

Arellano et al., 2016, for the data and calculations involved).

We also calculated the C:N ratio as an additional edaphic

variable. We estimated climatic conditions at each plot using

the 19 bioclimatic variables in the WorldClim database (ras-

ters of 30-arcsec resolution (�1 km); Hijmans et al., 2005).

These 19 climatic variables (plus elevation) were summarized

into three principal components (PCs) of a principal

components analysis (PCA). These three PCs accounted for

over 95% of the variance of the climatic/elevational data.

PC1 can be interpreted as temperature, PC2 as temperature

seasonality, and PC3 as temperature seasonality mixed with

precipitation (Fig. 1). Finally, we estimated slope, northness

and eastness from the DEM and the geographical coordinates

of the plots. This makes a total of 16 edaphic, climatic and

topographic variables, which were centred and scaled to unit

variance for further analyses.

We estimated the environmental heterogeneity of each site

as: (1) the standard deviations along each of the 16 environ-

mental variables for the plots contained in a site; (2) the

mean environmental Euclidean distance between the plots

contained in a site; (3) the maximum environmental Euclid-

ean distance between the plots contained in a site; and (4)

the mean environmental Euclidean distance along the mini-

mum spanning tree connecting all the plots contained in a

site. Therefore, the environmental heterogeneity matrix (H)

contained 65 rows and 16 1 3 5 19 columns.

Estimation of overlap of species niches

For each pair of species present in our dataset we computed

a metric of niche overlap along each of the 16 environmental

variables. This implied several steps involving kernel density

estimations. First we applied Silverman’s rule of thumb (as in

the bw.nrd0 function of the R package stats) to estimate the

bandwidth for a Gaussian kernel density estimator for each

species i along the environmental variable k. We then aver-

aged across all species to obtain a single bandwidth to be

applied to all the species along k. This guaranteed that the

underlying kernels were all the same for the density estima-

tion of all the species in that environmental variable. Then

we calculated the Gaussian kernel density estimator for each

species i along k: Dik (using the density function of the stats

R package). Finally, we calculated the niche overlap along k

for each pair of species (i, j) as the Bhattacharyya distance

between Dik and Djk:

G. Arellano et al.
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Oijk5

ðmax kð Þ

min kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DikDjk

p
:

This is a measure of niche overlap based on the distribution

of the species along environmental gradients. We considered

it a good proxy of the competitive interactions between indi-

viduals of those species not only at the landscape scale but

also at the plot and site scale.

Once we had obtained Oijk for all species and environmen-

tal gradients, we calculated two versions of the average Oijk

for a given site with S species. First, by considering all the

species in the site irrespectively of their co-occurrence within

specific plots:

site �Ok 5

PS
i51

PS
j51 OijkNiNjPS

i51

PS
j51 NiNj

where Ni and Nj are the total abundances of the species i

and j, respectively, in the site. The expression above is the

average niche overlap weighted by the expected number of

interactions between individuals of species i and j, assuming

perfectly random mixing of individuals within the site. This

weighting gives such importance to the common species

that in practice the exclusion of rare species (e.g. unseen

species) does not influence the results. The second version

of the average Oijk for a given site took into account the

apportioning of species within the m plots contained in the

site:

plot �Ok 5
1

m

Xm

p51

PSp

i51

PSp

j51 OijknpinpjPSp

i51

PSp

j51 npinpj

where Sp, npi and npj are the species richness and the abun-

dances of species i and j in plot p, respectively. The interpre-

tation is similar to the first version above, but excludes from

the calculations the niche overlap of those species that do

not co-occur in the plots (even if they co-occur in the site).

Both versions, along all environmental variables, constituted

the niche overlap matrix (O), which contained 65 rows and

16 3 2 5 32 columns.

Both site �O k and plot �O k include in their calculation the

abundances of the species in the site, so both can be influ-

enced to some degree by the shape of the SAD in the site.

This potential confounding effect is discussed in detail in

Appendix S3, but was considered negligible in our study.

Estimation of productivity

We estimated productivity at plot level, which also served to

characterize each site. To estimate the productivity of each

plot, we first estimated its aboveground biomass (AGB) as

the sum of the AGB of all the individuals in the plot. The

AGB of each individual was estimated through the allometric

equation of Chave et al. (2005) for tropical moist forests:

AGB (Mg) 5 50.9 3 wood density (g/cm3) 3 d.b.h.2 (cm2)

3 height (m). The wood density data for each species was

extracted from the Global Wood Density Database (Zanne

et al., 2009). If a species was not represented in the wood

density database, or it was not fully identified in our dataset,

we used the average for the genus (or family if we could not

recover information at the genus level). In all cases we only

employed data from the Neotropics. If a species belonged to

a family that was not represented in the database, we used

the average wood density of all the species found in the plots

where the target species was present, weighted by the number

of co-occurrences. Overall, 341 species received estimations

at the species level, 1084 at the genus level, 480 at the family

level and 180 at the community level. Then, we created a

model to predict aboveground net primary productivity

(ANPP) as a function of AGB. We employed the Michaelis–

Menten asymptotic model fitted to the data on AGB and

ANPP of tropical humid and tropical montane forests from

Appendix 1 of Keeling & Phillips (2007). Only the most reli-

able data from this appendix were included (‘core data’,

n 5 50). The resulting model was

Figure 1 Correlation between original bioclimatic variables and the first three principal components of a climatic principal component analysis.

‘Prec. seasonality’, BIO15; ‘Temp. seasonality’, BIO2–BIO4 and BIO7; ‘Precipitation’, BIO12–BIO14 and BIO16–BIO19; ‘Temperature’, elevation,

BIO1, BIO5, BIO6 and BIO8–BIO11. All codes as in WorldClim (http://www.worldclim.org/bioclim).

Causes for changes in the SAD shape
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ANPP5
36:319123AGB

201:149101AGB
:

We calculated ANPP for each plot by applying this model to

the previously obtained values of AGB. Finally, we estimated

the ANPP for each site as the average ANPP of the plots con-

tained in the site. Therefore, the productivity matrix (P) con-

tained 65 rows and only one column.

Statistical analyses: variation partitioning

The variation in a response matrix (or variable) can be parti-

tioned into components accounted for by two or more

explanatory tables and their combined effects (Smith &

Lundholm, 2010). In the case of two explanatory matrices (A

and B), the variation in the response matrix can be decom-

posed into four fractions: (1) explained exclusively by A; (2)

explained exclusively by B; (3) jointly explained by A and B;

and (4) unexplained. Similarly, the variation partitioning

analysis of four explanatory matrices (R, H, O and P) returns

16 fractions. Only four fractions of variation represent

unequivocal support for underlying mechanisms (those

exclusively explained by each of the four explanatory matri-

ces). We conducted this analysis using function varpart of

the R package vegan (Oksanen et al., 2015).

All the calculations and analyses were conducted in R v.

3.2.2 and all packages were those contained in CRAN on 18

November 2015, as accessed through the checkpoint package

(v. 0.3.15).

RESULTS

General results

Empirical SADs, unveiled SADs and fitted SADs were all

more lognormal at higher elevations, ranging from invariably

logseries curves below 1400 m to many symmetrical lognor-

mal curves above 3000 m (Figs 2a & 3). Terrain roughness

clearly covaried with elevation, with sites at higher elevations

surrounded by rougher terrains (Fig. 2b). Sites were highly

heterogeneous in general; for many sites and many variables,

the standard deviation of a given parameter at the site scale

was as large as the standard deviation of that same parameter

in the whole study region (Fig. 2c, d). There were no eleva-

tional changes in the environmental heterogeneity of sites,

regardless of the metric employed (Fig. 2d). Species co-

occurring at plots and sites presented high overlap on their

niches, at any elevation. Species overlapped 87–91% of their

niches at site and plot scales for climatic PC1, PC2 and PC3,

92–95% of their niches for the edaphic variables, and 94–

97% of their niches for the topographic variables (slope,

northness and eastness). Species co-occurring at plots always

presented more similar niches than those co-occurring at

sites (Fig. 2e), but niche overlap at the plot and site scales

were highly correlated (Pearson’s r 5 0.92, P< 0.001). From

1600 to 3500 m, the mean niche overlap decreased linearly,

whereas trends below 1600 m in elevation were not clear.

Finally, ANPP decreased linearly with elevation, from c.

20 Mg ha21 year21 at 1000 m to c. 5 Mg ha21 year21 at

3500 m (Fig. 2f). However, Amazonian and submontane sites

below 1000 m presented similar (or slightly lower) ANPP

values to lower montane sites at 1000–1500 m.

Results of the variation partitioning

The full model, including R, H, O and P as predictors,

explained almost completely the observed variation in the

SAD shape (adjusted R2 5 0.91). Many of our predictor varia-

bles were correlated, making it impossible to determine the

true underlying causes of 40.4% of the variation in SAD

shape. However, 50.6% of the variation in the SAD shape

could be assigned to individual predictor matrices: 28.4% was

explained exclusively by niche overlap, 15.4% exclusively by

environmental heterogeneity, 5.2% exclusively by landscape

roughness and 1.6% exclusively by productivity (Fig. 4).

DISCUSSION

Neutral versus niche-based mechanisms explaining

the variation in SAD shape

Landscape roughness (a proxy for neutral dispersal limita-

tion, once the effect of environmental heterogeneity has been

taken out), landscape heterogeneity (a proxy of the availabil-

ity of niches), average niche overlap between species, and

productivity, explained together 91% of the variation in SAD

shape. More than half of the variation in SAD shape could

be attributed to specific factors. Among the most important

factors influencing the changes in SAD shape were variables

linked to niche processes.

Niche overlap along different variables alone was enough

to explain 28% of the variability in the Gambin a parameter

across our study region (74% if considered jointly with the

other factors analysed). Plant communities that exhibited

lower niche overlap on average were characterized by more

lognormal SADs. In places where species had high niche

overlap, one or a few species outcompete the other species,

and most species have very low abundances (reflected by

logseries SADs). If more lognormal SADs imply more or bet-

ter opportunities for more species, our results suggest that

species attain such opportunities by having less niche overlap

with co-occurring species. Thus, the Gambin a parameter

would measure the ability of the species in the assemblage to

efficiently fill the n-dimensional niche space available, as pre-

viously hypothesized (Ugland et al., 2007; Matthews et al.,

2014).

Ugland et al. (2007) also suggested that the Gambin a

could measure the dimensionality of the processes structuring

a community, understood as environmental heterogeneity or

complexity. Communities driven by many processes, or

responding to multiple gradients (e.g. in highly heterogene-

ous or complex environments), would have a high a, and

those driven by a few overriding processes (e.g. a major dis-

turbance) would have a low a value (Ugland et al., 2007;

Matthews & Whittaker, 2014). In our system, however,

G. Arellano et al.
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heterogeneity alone explained only 15% of the changes in

SAD shape (23% if considered jointly with the other varia-

bles analysed). Thus, we found lower support for this inter-

pretation of a in our study system. In addition, and contrary

to our expectation, we did not find more complex and

heterogeneous abiotic conditions in the montane areas than

in the lowlands. Consequently, the change in the SAD shape

along the elevational gradient cannot exclusively be attributed

to changes in sites’ environmental heterogeneities or com-

plexities. In any case, environmental heterogeneity should

Causes for changes in the SAD shape
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shape the SAD only if co-occurring species show non-

overlapping niches. Thus, it is not surprising that we found

average niche overlap to be the most important factor

explaining the SAD shape, while environmental heterogeneity

was secondary in importance.

Landscape roughness alone, interpreted as a proxy for neu-

tral processes, explained only 5% of the variation in SAD

shape. However, there is substantial correlation between land-

scape roughness and the other factors considered. In particu-

lar, 36% of the variation in SAD shape was explained jointly

by landscape roughness and niche overlap (jointly including

the other factors as well). As discussed extensively in the

context of beta-diversity studies, joint fractions of explained

variation cannot provide useful information in terms of

causal mechanisms (Smith & Lundholm, 2010). Besides,

landscape roughness could be correlated with unmeasured

environmental heterogeneity. Overall, the results for

landscape roughness are not as informative as those for the

other processes discussed.

One additional important limitation of the present study

is the use of realized niches instead of fundamental niches. If

only realized niches are measured, it is likely to be impossible

to completely distinguish niche-based and neutral processes.

This is because realized niches are calculated on the basis of

the spatial distribution of the individuals of the species, with-

out a real understanding of the preferences of the species.

Consequently, realized niches might be reflecting, instead of

causing, the spatial distribution of the species (Devictor

et al., 2010). Strong spatial clustering of the species might

result in narrow and non-overlapping realized niches in sites

where there is spatial autocorrelation of environmental con-

ditions. Realized niches will tend to be narrow and non-

overlapping where strong spatial clustering of species hap-

pens, even if such aggregation of conspecifics is caused by

Figure 3 Frequency of species within doubling-abundance classes or Preston’s octaves in 65 forest sites sorted by elevation in the Madidi region

(Bolivia). Hollow bars are based on the empirical abundances; dots represent the frequency of species in abundance classes according to an

unveiled SAD; grey backgrounds represent a Gambin model fitted to the distribution of unveiled abundances. Note the different scales of the y-

axes.

Figure 2 Elevational trends of forest characteristics along the elevational gradient in the Madidi region (Bolivia). (a) Shape of the species

abundance distribution (SAD) curve, as summarized by the a parameter of a fitted Gambin model (lower a values characterize logseries SADs and

high a values lognormal SADs). (b) Topographical complexity measured with the average surface roughness index (Ra). Different lines correspond

to circles of increasing radius (Ra is always greater in larger circles). (c) Standard deviation of the plots at each site along each of the environmental

variables considered in this study (three climatic axes and edaphic and topographic variables). A standard deviation of one in a given variable

indicates that a site is as heterogeneous as the whole study region for that variable. (d) Environmental Euclidean distances between the plots of each

site. ‘Mean (MST)’ is the mean distance between two plots along the minimum spanning tree connecting all the plots in a site. The horizontal lines

are linear models fitted to each of the three measures of intra-site environmental distances along the elevational gradient. (e) Average niche overlap

between the species co-occurring in each site (‘s’) and co-occurring in the plots of each site (‘p’). Both measures are averaged across all the species

and all the environmental variables considered. (f) Productivity measured as aboveground net primary productivity (ANPP) along the elevational

gradient.
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limited dispersion. In fact, any mechanism leading to strong

autocorrelated samples of conspecific individuals (e.g. habitat

preferences or dispersal limitation) would cause narrower

and less overlapped realized niches, as well as more lognor-

mal SADs (Green & Plotkin, 2007; �Sizling et al., 2009). The

use of fundamental niches, albeit requiring experimental

manipulation of the species, may be required to gain further

insight into the processes driving the distribution and relative

success of the species.

Higher productivity is not correlated with

more even communities

Some researchers have reported more logseries SADs (i.e. less

even communities) in less productive environments and with

stronger environmental filtering (e.g. cold temperatures)

(Hurlbert, 2004; Qiao et al., 2015; Zhang et al., 2015; but see

Ulrich et al., 2016). In our study system, however,

productivity decreases with elevation, implying a strong neg-

ative correlation between productivity and the Gambin a.

This disagreement with previous literature may be caused

because the other factors considered clearly override the

expected effect of productivity on SAD shape (productivity

alone explains only 1.6% of the variation in SAD shape).

Furthermore, productivity can be thought of as the outcome

of environmental factors (mainly elevation) and at least three

community properties: (1) species richness; (2) SAD shape

or evenness; and (3) differences between species (� trait

divergence � niche overlap) (Nijs & Roy, 2000; Hillebrand

et al., 2008; Maire et al., 2012). These three aspects of diver-

sity are thought to cause changes in productivity through

complementary effects (Loreau & Hector, 2001), but show

very contrasting elevational trends. To understand the rela-

tionship between the SAD shape and productivity along the

elevational gradient, these causal relationships and the cova-

riation between the three factors, as well as the effect of envi-

ronmental filtering, should be taken into account.

Is there an ecological basis for SADs?

The curve-fitting approach aims to extract meaningful eco-

logical information from SADs. Examples are: (1) the disper-

sal rate (the parameter m of the zero sum multinomial

model; Hubbell, 2001); (2) the relative probability with

which available niches are colonized (the parameter k of the

power fraction model; Tokeshi, 1996); and (3) the degree of

conspecific frequency dependence in mortality rates (the

parameter d of the non-neutral model of Jabot & Chave,

2011). All these aspects are estimated by fitting specific mod-

els to species abundance data alone. However, and regardless

of the goodness-of-fit of a given model to the SAD, it is

important to check with external data how robust or plausi-

ble a given interpretation of the model parameters is. If fitted

parameters are not confronted with external data (e.g. direct

measures of seed dispersal or colonization rates in gaps),

they cannot really inform us about the underlying ecological

processes, and the link between a parameter and a process is

necessarily just a subjective interpretation.

Despite its critical importance, studies relating ecological

gradients to fitted parameters of SAD models are scarce, and

have mostly focused on disturbance gradients (Dornelas

et al., 2009). The most complete study relating SAD parame-

ters to external factors was that published by Yen et al.

(2013). These authors evaluated the relationship between

many habitat structure and landscape context covariates and

the shape of multiple avifaunal SADs in south-eastern Aus-

tralian forests. They did not find any relationship between

the evaluated ecological covariates and SAD shape. Conse-

quently, they concluded that there is no ecological basis for

SADs, and that SAD shape is not useful for distinguishing

among theories of assemblage structure. In contrast, as dis-

cussed above, we did find strong covariation between ecolog-

ical and biological factors and SAD shape. We conclude that

there are ecological bases for the SAD.

Figure 4 Results of the variation partitioning analysis. The main

barplot with black bars represents the amount of variation in the

shape of the species abundance distribution (SAD) that is explained

by a given combination of factors, as indicated in the left panel. The

small white barplot at the top of the left panel represents the

amount of variation in the shape of the SAD explained by a given

matrix (R, landscape roughness; H, environmental heterogeneity; O,

mean niche overlap; P, productivity), regardless of it doing so alone

or jointly with other matrices.

Causes for changes in the SAD shape
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Two reasons could explain our disagreement with Yen

et al. (2013). First, we considered a broader range of SAD

shapes. The values for the metric of SAD shape employed by

Yen et al. (2013) showed a coefficient of variation of 30%

(mean 5 0.885, SD5 0.267), while ours showed a coefficient

of variation of 68% (mean 5 1.56, SD 5 1.06). This greatly

increases our likelihood of finding correlations with external

factors when such correlations exist. Second, and most

importantly, we chose the covariates to check in the light of

strong a priori hypotheses regarding SAD shape, whereas Yen

et al. (2013) selected their variables based on previous work

focused on species distributions in their study system (Yen

et al., 2011). It is important to realize that an environmental

variable that influences the distribution of species does not

need to influence SAD shape, and vice versa. On the one

hand, two different SADs can be composed of totally differ-

ent species in two contrasting communities and still show

the same shape. On the other hand, a factor with no effect

on compositional changes can cause changes in SAD shape.

For example, landscape roughness predicts changes in SAD

shape under a purely neutral perspective, i.e. even if the

species living in flat areas are exactly the same as those living

in rough areas the shape of the SAD itself is expected

to change.

Nevertheless, describing statistical relationships between

different aspects of community structure (e.g. species rich-

ness, mean niche overlap, SAD shape) is critical for establish-

ing causal relationships among them and with the

environment. In this regard, a major open question is the

contribution of species richness to SAD shape (Locey &

White, 2013). In our specific case it seems unlikely that sta-

tistical factors have greater weight than ecological factors (see

Appendix S3 for an extensive discussion), but we found

some covariation between different aspects of community

structure and therefore our results need to be looked at with

the appropriate caution.

CONCLUSION

Variation in SAD shape is often associated with purely statis-

tical factors. However, we found a strong signature of ecolog-

ical factors influencing the shape of the SAD curve. Lowland

forests harbour many more species than montane forests

while providing fewer opportunities for each species, prob-

ably because of more intense interspecific competition.

Although montane forests show a similar diversity of micro-

habitats to lowland forests, montane species overlap less in

their niche requirements with coexisting species than the spe-

cies in the lowlands. This leads to better/more opportunities

for the relatively few species that can withstand the stressful

conditions of the montane forests. The Gambin a parameter,

which roughly measures the ability of the species of the

assemblage to efficiently fill the n-dimensional niche space

available (Ugland et al., 2007; Matthews et al., 2014), could

be useful when niche overlap or trait differences cannot be

measured directly or reliably (Maire et al., 2012). Finally, the

role of low migration and low niche overlap in topographi-

cally complex habitats, such as Andean forests, seem to be

difficult to tell apart in both theory and practice. To disen-

tangle the role of both processes in shaping plant commun-

ities in the Amazon–Andes system gradient represents a

major open challenge, for which observational data might be

not enough.
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